## KS 98-1 Multi-function unit Engineering manual



A publication of:

PM
Prozeß- ind Maschinen-Automation GmbH P. O. Box 310229 • D-34058 Kassel • Germany

All rights reserved.
No part of this document may be reproduced or published in any form or by any means without prior written permission from the copyright owner.

## Symbols used on the instrument

EU conformity marking
Caution, Follow the operating instructions!

## Symbols in the text

Danger of injury

Danger for the instrument, or of faulty function


Danger of destroying electronic components due to electrostatic discharge (ESD)


Additional information or reference to further sources of information.

Important hint for avoiding frequent operator faults.

## Liability and warranty

Any information and notes in these operating instructions were composed under consideration of the applicable regulations, the present state of the art and our extensive know-how and experience.
With special versions, additional ordering options or due to the latest technical modifications, the actual scope of delivery may vary from the descriptions and drawings in this manual.
For questions, please, contact the manufacturer.

Before starting to work with the instrument and before commissioning, in particular, these operating instructions must be read carefully! The manufacturer cannot be held responsible for damage and trouble resulting from failure to comply with the information given in this manual.

This product may be subject to change due to emprovements of the product features in the course of further development.

## Copyright

This operating manual should be considered as confidential information, intended only for persons who work with the instrument.
Contraventions are subject to payment of damages. Further claims reserved.

## Content

I. Operating instruction ..... 9
I-1 Description .....  9
I-2 Safety notes ..... 10
I-3 Technical data ..... 12
I-4 Versions ..... 18
I-4.1 I/O-Modules ..... 19
I-4.2 Ex-factory setting ..... 19
I-4.3 Auxiliary equipment ..... 19
I-5 Mounting ..... 20
1-5.1 Function of wire-hook switches ..... 21
I-5.2 Retro-fitting and modific. of I/O-ext. (*watch connecting diagram) ..... 22
I-5.3 I/0 extension with CANopen ..... 22
I-6 Electrical connections - Safety hints ..... 23
I-6.1 Electromagnetic compatibility ..... 23
I-6.2 Measurement earth connection. ..... 23
I-6.3 RC protective circuitry ..... 24
I-6.4 Galvanic isolations ..... 24
I-6.5 General connecting diagram ..... 24
I-6.6 Analog inputs ..... 26
l-6.7 Digital in- and outputs. ..... 27
I-6.8 Connecting diagram i/o-modules ..... 28
I-7 Commissioning ..... 29
I-8 Operation ..... 30
I-8.1 Front view ..... 30
I-8.2 Menu structure ..... 31
I-8.3 Navigation, page selection ..... 32
I-8.4 Adjusting values ..... 33
I-9 Instrument settings in the main menu ..... 34
I-9.1 CAN-Status ..... 34
I-9.2 Profibus-Status ..... 34
I-9.3 ModC-Status ..... 34
I-9.4 Calibration ..... 35
l-9.5 Online/Offline ..... 35
$\mathbf{I}-10 \quad$ Operating pages ..... 36
I-10.1 List display ..... 36
|-10.2 Bargraph display ..... 36
I-10.3 Alarm display ..... 37
I-10.4 Graphic trend curve ..... 37
I-10.5 Programmer ..... 38
I-10.6 Controller ..... 41
I-10.7 Cascade controller ..... 46
I-11 Maintenance, test, trouble shooting. ..... 48
-11.1 Cleaning ..... 48
I-11.2 Behaviour in case of trouble ..... 48
I-11.3 Shut-down ..... 48
I-11.4 Test engineering as basic equipment ..... 48
I-11.5 I/O-Test ..... 50
II. Engineering-Tool ..... 51
II-1 Survey ..... 51
II-1.1 Scope of delivery ..... 51
II-2 Installation ..... 52
II-2.1 Hardware and software prerequisites ..... 52
II-2.2 Software installation ..... 52
II-2.3 Licencing ..... 53
II-2.4 Software start ..... 53
II-3 Menu reference to the engineering tool ..... 54
II-3.1 Menu 'File' ..... 54
II-3.2 Menu 'Edit' ..... 60
II-3.3 Menu 'Functions' ..... 63
II-3.4 Menu 'Fixed funct. ..... 63
II-3.5 Menu 'Device' ..... 64
II-3.6 Menu 'Options' ..... 65
II-3.7 Menu 'Window' ..... 67
II-3.8 Menu 'Help' ..... 67
II-4 Engineering tool operation ..... 68
II-4.1 Fundamentals of the engineering tool operation ..... 68
II-4.2 Function block placement ..... 68
II-4.3 Function block shifting ..... 68
II-4.4 Creating connections ..... 69
II-4.5 Online operation ..... 71
II-4.6 Trend function ..... 72
II-5 Building an engineering ..... 77
II-6 Tips and tricks ..... 81
II-6.1 Function keys ..... 81
II-6.2 Mouse key functions ..... 82
II-6.3 Tips and tricks ..... 83
III. Function blocks: ..... 89
III-1 Scaling and calculating functions ..... 91
III-1.1 ABSV (absolute value (No. 01)) ..... 91
III-1.2 ADSU ( addition/subtraction (No. 03)) ..... 91
III-1.3 MUDI ( Multiplication / division (No. 05)). ..... 92
III-1.4 SQRT ( square root function (No. 08)) ..... 92
III-1.5 SCAL ( scaling (No. 09)) ..... 93
III-1.6 10EXP (10s exponent (No. 10)) ..... 93
III-1.7 EEXP (e-function (No. 11)) ..... 94
III-1.8 LN (natural logarithm (No. 12)) ..... 94
III-1.9 LG10 (10s logarithm (No. 13)) ..... 95
III-2 Non-linear functions ..... 96
III-2.1 LINEAR (linearization function (No. 07)) ..... 96
III-2.2 GAP (dead band (No. 20)) ..... 98
III-2.3 CHAR (function generator (No. 21)) ..... 99
III-3 Trigonometric functions ..... 100
III-3.1 SIN (sinus function (No. 80)) ..... 100
III-3.2 COS (cosinus function (No. 81)) ..... 100
III-3.3 TAN (tangent function (No. 82)) ..... 101
III-3.4 COT (cotangent function (No. 83)) ..... 102
III-3.5 ARCSIN (arcus sinus function (No. 84)) ..... 103
III-3.6 ARCCOS (arcus cosinus function (No. 85)). ..... 104
III-3.7 ARCTAN (arcus tangent function (No. 86)) ..... 105
III-3.8 ARCCOT (arcus cotangent function (No. 87)) ..... 105
III-4 Logic functions ..... 106
III-4.1 AND (AND gate (No. 60)) ..... 106
III-4.2 NOT (inverter (No. 61)) ..... 106
III-4.3 OR (OR gate (No. 62)) ..... 107
III-4.4 BOUNCE (debouncer (No. 63)) ..... 108
III-4.5 EXOR (exclusive OR gate (No. 64)). ..... 108
III-4.6 FLIP (D flipflop (No. 65)) ..... 109
III-4.7 MONO (monoflop (No. 66)). ..... 110
III-4.8 STEP (step function for sequencing (No. 68)) ..... 111
III-4.9 TIME1 (timer (No. 69)) ..... 112
III-5 Signal converters ..... 114
III-5.1 AOCTET (data type conversion (No. 02)), ..... 114
III-5.2 ABIN (analog $\leftrightarrow$ binary conversion (No. 71)) ..... 115
III-5.3 TRUNC (integer portion (No. 72)) ..... 117
III-5.4 PULS (analog pulse conversion (No. 73)) ..... 118
III-5.5 COUN (up/down counter (No. 74)). ..... 120
III-5.6 MEAN (mean value formation (No. 75)) ..... 122
III-6 Time functions ..... 124
III-6.1 LEAD ( differentiator (No. 50)) ..... 124
III-6.2 INTE (integrator (No. 51)) ..... 126
III-6.3 LAG1 ( filter (No. 52)). ..... 128
III-6.4 DELA1 ( delay time (No. 53)) ..... 129
III-6.5 DELA2 (delay time (No. 54) ) ..... 130
III-6.6 FILT ( filter with tolerance band (No.55) ) ..... 131
IIII-6.7 TIMER ( timer (No. 67) ) ..... 132
III-6.8 TIME2 ( timer (No. 70) ) ..... 133
III-7 Selecting and storage ..... 134
III-7.1 EXTR ( extreme value selection (No. 30)) ..... 134
III-7.2 PEAK ( peak value memory (No. 31)). ..... 135
III-7.3 TRST ( hold amplifier (No. 32)). ..... 136
III-7.4 SELC ( Constant selection (No. 33)) ..... 136
III-7.5 SELD (selection of digital variables - function no. 06) ..... 137
III-7.6 SELP ( parameter selection (No. 34)) ..... 138
III-7.7 SELV1 ( variable selection (No. 35)) ..... 139
III-7. 8 SOUT ( Selection of output (No. 36)). ..... 140
III-7.9 REZEPT ( recipe management (No. 37)) ..... 141
III-7.10 20F3 ( 2-out-of-3 selection with mean value formation (No. 38)) ..... 143
III-7.11 SELV2 ( cascadable selection of variables (No. 39)) ..... 145
III-8 Limit value signalling and limiting ..... 146
III-8.1 ALLP ( alarm and limiting with fixed limits(No. 40)) ..... 146
III-8.2 ALLV ( alarm and limiting with variable limits (No. 41)). ..... 148
III-8.3 EQUAL ( comparison (No. 42) ). ..... 150
III-8.4 VELO ( rate-of-change limiting (No. 43) ) ..... 151
III-8.5 LIMIT ( multiple alarm (No. 44)) ..... 152
III-8.6 ALARM ( alarm processing (No. 45) ) ..... 153
III-9 Visualization ..... 154
III-9.1 TEXT (text container with language-dependent selection (No. 79)) ..... 154
III-9.2 VWERT ( display / definition of process values (No. 96) ). ..... 156
III-9.3 VBAR ( bargraph display (No. 97) ). ..... 161
III-9.4 VPARA ( parameter operation (No. 98) ) ..... 164
III-9.5 VTREND ( trend display(No. 99) ) ..... 166
III-10 Communication ..... 169
III-10.1 L1READ ( read level1 data(No. 100) ) ..... 169
III-10.2 L1WRIT ( write level1 data (No. 101)) ..... 170
III-10.3 DPREAD ( read level1 data via PROFIBUS (No. 102) ) ..... 171
III-10.4 DPWRIT ( write level1 data via PROFIBUS (No. 103)) ..... 172
III-10.5 ..... 173
III-11 I/0 extensions with CANopen ..... 175
III-11.1 RM 211, RM212 and RM213 basic modules ..... 175
III-11.2 C_RM2x (CANopen fieldbuscoupler RM 201 (No. 14)) ..... 176
III-11.3 RM_DI (RM 200 - (digital input module (No. 15)) ..... 177
III-11.4 RM_DO (RM 200 - digital output module (No. 16)) ..... 177
III-11.5 RM_Al (RM200 - analog input module (No. 17)) ..... 178
III-11.6 RM_AO (RM200 - analog output module (No. 18)) ..... 180
III-11.7 RM_DMS (strain gauge module (No. 22)) ..... 181
III-12 KS 98-1- KS 98-1 cross communication (CANopen) ..... 183
III-12.1 CRCV (receive mod. block no's 22,24,26,28 (No.56)) ..... 183
III-12.2 CSEND (Send mod. blockno.'s 21, 23, 25, 27 - (No. 57)) ..... 184
III-13 Connection of KS $\mathbf{8 0 0}$ and KS $\mathbf{8 1 6}$ ..... 185
III-13.1 C_KS8x (KS 800 and KS 816 node function - (No. 58)) ..... 186
III-13.2 KS8x (KS 800/ KS 816 controller function - (No. 59)). ..... 187
III-14 Description of KS 98-1 CAN bus extension ..... 189
III-14.1 CPREAD (CAN-PDO read function (No. 88)) ..... 193
III-14.2 CPWRIT (CAN-PDO write function (No. 89)) ..... 194
III-14.3 CSDO (CAN-SDO function (No. 92)) ..... 195
III-15 Programmer ..... 201
III-15.1 APROG ( analog programmer (No. 24)) / APROGD ( APROG data (No. 25)) . ..... 201
III-15.2 DPROG ( digital programmer (No. 27)) / DPROGD ( DPROG data(No. 28)) ..... 219
III-16 Controller. ..... 223
III-16.1 CONTR (Controllerfunction with one parameterset (No. 90)) ..... 223
III-16.2 CONTR+ (Controllerfunction with six parametersets (No. 91)) ..... 224
III-16.3 Parameter and Konfiguration for CONTR, CONTR+ ..... 226
III-16.4 Control behaviour ..... 228
III-16.5 Optimizing the controller ..... 240
III-16.6 Empirical optimization ..... 241
III-16.7 Self-tuning $\rightarrow$ controller adaptation to the process ..... 242
III-16.8 PIDMA (Control function with particular self-tuning behaviour (No. 93) ..... 247
III-16.9 Parameter and configuration for PIDMA ..... 250
III-16.10 Controller characteristics and self-tuning with PIDMA ..... 252
III-16.11 Controller applications: ..... 256
III-16.12 Setpoint functions ..... 260
III-16.13 Process value calculation ..... 265
III-16.14 Small controller ABC ..... 271
III-17 Inputs ..... 274
III-17.1 AINP1 ( analog input 1 (No. 08)) ..... 274
III-17.2 AINP3...AINP5 ( analog inputs 3 ... $5($ No. 112...114) ) ..... 281
III-17.3 AINP6 ( analog input 6 (No. 115)) ..... 282
III-17.4 DINPUT ( digital inputs (No. 121)) ..... 285
III-18 Outputs ..... 286
III-18.1 OUT1 and OUT2 ( process outputs 1 and 2 (No. 116, 117)). ..... 286
III-18.2 OUT3( process output 3 (No. 118)) ..... 287
III-18.3 OUT4 and OUT5( process outputs 4 and 5 (No. 119...120)) ..... 288
III-18.4 DIGOUT ( digital outputs (No. 122)) ..... 289
III-19 Additional functions ..... 290
III-19.1 LED (LED display (No. 123)) ..... 290
III-19.2 CONST ( constant function (No. 126) ) ..... 291
III-19.3 INFO ( information function (No. 124)) ..... 292
III-19.4 STATUS ( status function (No. 125)) ..... 293
III-19.5 CALLPG (Function for calling up an operating page (no. 127)) ..... 296
III-19.6 SAFE ( safety function (No. 94)) ..... 297
III-19.7 VALARM (display of all alarms on alarm operating pages (function no. 109)298
III-20 Modular I/O - extension-modules ..... 300
III-20.1 TC_INP (analog input card TC, mV, mA) ..... 300
III-20.2 F_Inp (frequency/counter input) ..... 302
III-20.3 R_Inp (analog input card ) ..... 303
III-20.4 U_INP (analog input card -50...1500mV, 0...10V) ..... 305
III-20.5 I_OUT (analog output card 0/4...20mA, +/-20mA) ..... 307
III-20.6 U_OUT (analog output card 0/2...10V, +/-10V) ..... 308
III-20.7 DIDO (digital input/output card) ..... 309
III-21 Function management ..... 310
III-21.1 Memory requirement and calculation time ..... 310
III-21.2 Sampling intervals ..... 311
III-21.3 EEPROM data ..... 311
III-22 Examples ..... 312
III-22.1 Useful small engineerings ..... 312
III-22.2 Controller applications ..... 313
III-23 Index ..... 314

## Preface

This manual consists of three parts.

## I. Operating instructions

II. Engineeringtool description
III. Function block description

Section I holds the required information for identification, mounting, connection and electrical commissioning of the unit under consideration of safety notes of the application and environmental conditions.

The basic principles of operation are explained: Controls and indicators, menu structure and navigation with the cursor, selection of sub-menus and properties as well as adjustment of e.g. s and parameters.

Section II comprises the handling of the engineering-tool, the building of a simple engineering and transmission to the KS 98-1.

Section III presents the particular fnction blocks in detail.

For functional commissioning, additional descriptions are required; please, order them separately or load them from the PMA homepage: www.pma-online.de
[1-9
As the functions provided in KS 98-1 are composed individually for each application using an Engineering Tool ET/KS 98, entire comprehension of the operating functions requires the relevant Project description with the Enginee ring!

Supplementary documentation:

## I Operating instruction

## I-1 Description



Fig. 1 Frontview
The instrument is a compact automation unit the function of which can be configured freely by means of function blocks. Each unit contains a comprehensive function library for selection, configuration, parameter setting and connec tion of max. 450 function blocks by means of an engineering tool.
I.e. complex mathematical calculations, multi-channel control structures and sequence controllers can be realized in a single unit.

Various operating pages are indicated via the front-panel LCD matrix display, e.g.

- Numeric input and output of analog and digital signals, values and parameters as well as
- full-graphics display of bargraphs, controllers, programmers and trends.
- Display colour red / green and direct / inverse display can be switched over dependent on event, or by operation dependent on the engineering.

Dependent on version, the basic unit is equipped with analog and digital inputs, outputs and relays.

Additional inputs and outputs are available either with option C or "modular option C", which contains four sockets for various I/O modules.

Optionally, the unit may be equipped with 2 additional communication interfaces:

- Option B: serial TTL/RS422 interface or Profibus-DP
- Option CAN: CANopen-compliant interface port for the I/O extension with modular I/O system RM200


## I-2 Safety notes

This section provides a survey of all important safety aspects: optimum protection of personnel and safe, trouble-free operation of the instrument.

Additionally, the individual chapters include specific safety notes for prevention of immediate hazards, which are marked with symbols. Moreover, the hints and warnings given on labels and inscriptions on the instruments must be followed and kept in readable condition continuously.

## General

Software and hardware are programmed or developed in compliance with the state of the art applicable at the time of development, and considered as safe.

Before starting to work, any person in charge of work at the product must have read and understood the operating instructions.

The plant owner is recommended to request evidence for knowledge of the operating instructions by the personnel.

## Correct use for intended application

The operating safety is only ensured when using the products correctly for the intended application. The instrument can be used as a multiple function controller for open and closed control loops in industrial areas within the limits of the specified technical data and environmental conditions.

Any application beyond these limits is prohibited and considered as non-compliant.

Claims of any kind against the manufacturer and /or his lawful agents, for damage resulting from non-compliant use of the instrument are precluded, liability is limited to the user.

## User responsibility

The user is responsible:

- for keeping the operating manual in the immediate vicinity of the instrument and always accessible for the operating personnel.
- for using the instrument only in technically perfect and safe condition.

Apart from the work safety notes given in these operating instructions, compliance with the generally applicable regulations for safety, accident prevention and environment protection is compulsory.
The user and the personnel authorized by the user are responsible for perfect functioning of the instrument and for clear definition of competences related to instrument operation and maintenance. The information in the operating manual must be followed completely and without restrictions!

The user is responsible that the instrument is operated only by trained and authorized persons. Maintenance and repair may be done only by trained and specialized persons who are familiar with the related hazards.

Operation and maintenance of the instrument are limited to reliable persons. Any acts susceptible to impair the safety of persons or of the environment have to be omitted. Any persons who are under effect of drugs, alcohol or medication affecting reaction are precluded from operation of the instrument.

## Instrument Safety

This instrument was built and tested according to VDE 0411 / EN61010-1 and was shipped in safe condition. The unit was tested before delivery and has passed the tests required in the test plan.

In order to maintain this condition and to ensure safe operation, the user must follow the hints and warnings given in these safety notes and operating instructions.

The unit is intended exclusively for use as a measuring and control instrument in technical installations.
The insulation meets standard EN 61010-1 with the values for overvoltage category, degree of contamination, operating voltage range and protection class specified in the operating instructions / data sheet.
The instrument may be operated within the specified environmental conditions (see data sheet) without impairing its safety.
The instrument is intended for mounting in an enclosure. Its contact safety is ensured by installation in a housing or switch cabinet.

## Unpacking the instrument

Remove instrument and accessories from the packing. Enclosed standard accessories:

- operating notes or operating instructions
- fixing elements.

Check, if the shipment is correct and complete and if the instrument was damaged by improper handling during transport and storage.

## - Warning!

If the instrument is so heavily damaged that safe operation seems impossible, the instrument must not be taken into operation.

We recommend to keep the original packing for shipment in case of maintenance or repair.

## Mounting

Mounting is done in dustfree and dry rooms.
The ambient temperature at the place of installation must not exceed the permissible limits for specified accuracy given in the technical data. When mounting several units with high packing density, sufficient heat dissipation to ensure perfect operation is required.
For installation of the unit, use the fixing clamps delivered with the unit.
The sealing devices (e.g. sealing ring) required for the relevant protection type must also be fitted.

## Electrical connections

All electrical wiring must conform to local standards (e.g. VDE 0100 in Germany). The input leads must be kept separate from signal and mains leads.
The protective earth must be connected to the relevant terminal (in the instrument carrier). The cable screening must be connected to the terminal for grounded measurement. In order to prevent stray electric interference, we recommend using twisted and screened input leads.
The electrical connections must be made according to the relevant connecting diagrams.
See electrical safety, page 23

## Electrical safety

The insulation of the instrument meets standard EN 61 010-1 (VDE 0411-1) with contamination degree 2, overvoltage category III, working voltage 300 V r.m.s. and protection class I.
Galvanically isolated connection groups are marked by lines in the connecting diagram.

## Commissioning

Before instrument switch- on, ensure that the rules given below were followed:

- Ensure that the supply voltage corresponds to the specification on the type label.
- All covers required for contact safety must be fitted.
- Before instrument switch- on, check if other equipment and / or facilities connected in the same signal loop is / are not affected. If necessary, appropriate measures must be taken.
- On instruments with protection class I, the protective earth must be connected conductingly with the relevant terminal in the instrument carrier.
- The instrument must be operated only when mounted in its enclosure.


## Operation

Switch on the supply voltage. The instrument is now ready for operation. If necessary, a warm- up time of approx. 1.5 min . should be taken into account.

## ! Warning!

> Any interruption of the protective earth in the instrument carrier can impair the instrument safety. Purposeful interruption is not permissible. If the instrument is damaged to an extent that safe operation seems impossible, shut it down and protect it against accidental operation.

## Shut- down

For permanent shut- down, disconnect the instrument from all voltage sources and protect it against accidental operation.

Before instrument switch- off, check that other equipment and / or facilities connected in the same signal loop is / are not affected. If necessary, appropriate measures must be taken.

## Maintenance and modification

The instrument needs no particular maintenance.
Modifications, maintenance and repair may be carried out only by trained, authorized persons. For this, the user is invited to contact the service.

For correct adjustment of wire-hook switches (page 21 ) and for installation of modular option C, the unit must be withdrawn from the housing.


## Warning! <br> When opening the instruments, or when removing covers or components, live parts or terminals can be exposed.

Before carrying out such work, the instrument must be disconnected from all voltage sources.

After completing such work, re- shut the instrument and re-fit all covers and components. Check, if the specifications on the type label are still correct, and change them, if necessary.

## Explosion protection

Non-intrinsically safe instruments must not be operated in explo-sion-hazarded areas. Moreover, the output and input circuits of the instrument / instrument carrier must not lead into explo-sion-hazarded areas.

## I-3 Technical data

## General

## Housing

Plug-in module, inserted from front.
Material: Makrolon 9415, flame-retardant, self-extinguishing
Flammability class: UL 94 V0

## Front-panel / display

$160 \times 80$-dot LCD matrix display
4 LEDs, 4 foil-covered keys

## Front interface port (standard)

Front-panel socket for PC adapter
(see „Accessories" page 19).

## Protection mode

(to EN 60 529, DINVDE 0470)
Front: IP 65
Housing: IP 20
Terminals: IP 00

## Safety tests

Complies with EN 61 010-1

- Overvoltage category: III
- Contamination class: 2
- Working voltage range: 300 VAC
- Protection class: I


## Electrical connections

Screw terminals for conductor cross-section from $0,5-2,5 \mathrm{~mm}^{2}$

## Mounting method

Panel mounting with 4 fixing clamps at top/bottom

## Mounting position

Not critical

## Weight

Approx. 0.75 kg with all options

## Environmental conditions

## Permissible temperatures

For operation: $0 \ldots . .55^{\circ} \mathrm{C}$
For specified accuracy: $0 \ldots 60^{\circ} \mathrm{C}$, optionC
For UL-Devices: Operation and protected operation $0 . . .50^{\circ} \mathrm{C}$
Storage and transport: $-20 . . .60^{\circ} \mathrm{C}$
Temperature effect: $\leq 0.15 \% / 10 \mathrm{~K}$
Climatic category
KUF to DIN 40040
Relative humidity: $\leq 75 \%$ yearly average, no condensation

## Shock and vibration

Vibration test Fc: To DIN 68-2-6 (10... 150 Hz )
Unit in operation: 1 g or 0.075 mm ,
Unit not in operation: 2 g or 0.15 mm
Shock test Ea:To DIN IEC 68-2-27 (15g, 11 ms)

## DIN EN 14597

The device may be used as temperature control and limiting equipment according to DIN EN 14597.

## CE marking

Meets the EuropeanDirectives regarding „Electromagnetic Compatibility" and "Low-voltage equipment" $\rightarrow$ page 23)
The unit meets the following European guidelines:Electromagnetic compatibility (EMC): 89/336/EEC (as amended by 93/97/EEC)
$\square$ Electrical apparatus (low-voltage guideline): 73/23/EEC (as amended by 93/68/EEC).
Evidence of conformity is provided by compliance with EN 61326-1 and EN 61010-1

## cULus certification

cULus-certification
(Type 1, indoor use) File: E 208286
RC protective circuitry must be fitted with inductive load!

## Connections

Depending on version and selected options, the following inputs and outputs are available:

|  | DI | D0 | Al | A0 |
| :---: | :---: | :---: | :---: | :---: |
| 4 relays or | $\begin{aligned} & \text { di1* } \\ & \text { di2 } \end{aligned}$ | OUT1 <br> OUT2 <br> OUT4 <br> OUT5 | INP1 <br> INP5 <br> INP6 | - |
| $\begin{gathered} 2 \text { relays } \\ + \\ 2 \text { AO } \end{gathered}$ | $\begin{aligned} & \text { di1* } \\ & \text { di2 } \end{aligned}$ | $\begin{aligned} & \text { OUT4 } \\ & \text { OUT5 } \end{aligned}$ | $\begin{aligned} & \text { INP1 } \\ & \text { INP5 } \\ & \text { INP6 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { OUT1 } \\ & \text { OUT2 } \end{aligned}$ |
| OPTION B | $\begin{aligned} & \mathrm{di3} \\ & \mathrm{di4} \\ & \mathrm{di5} \\ & \mathrm{di6} \\ & \mathrm{di} 7 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { do1 } \\ & \text { do2 } \\ & \text { do3 } \\ & \text { do4 } \end{aligned}$ | - | - |
| OPTION C* <br> or | $\begin{gathered} \hline \text { di8 } \\ \text { di9 } \\ \text { di10 } \\ \text { di11 } \\ \text { di12 } \end{gathered}$ | $\begin{aligned} & \text { do5 } \\ & \text { do6 } \end{aligned}$ | INP3 INP4 | OUT3 |
| modular <br> OPTION C* <br> * Not ava | Depending on module type |  |  |  |

## Inputs

## Universal input INP1

Limiting frequency: $f g=1 \mathrm{~Hz}$, Measurement cycle: 200 ms

## Thermocouples

according to DIN IEC 584

| Type Range | Error | Resolution |
| :---: | :---: | :---: |
| L -200...900 ${ }^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,05 K |
| J $\quad-200 . . .900^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,05 K |
| K -200... $1350^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,072 K |
| $\mathrm{N} \quad-200 \ldots 1300^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,08 K |
| S -50...1760 ${ }^{\circ} \mathrm{C}$ | $\leq 3 \mathrm{~K}$ | 0,275 K |
| R -50...1760 ${ }^{\circ} \mathrm{C}$ | $\leq 3 \mathrm{~K}$ | 0,244 K |
| $B^{11}(25) 400 \ldots 1820^{\circ} \mathrm{C}$ | $\leq 3 \mathrm{~K}$ | 0,132 K |
| T -200.. . $400^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,056 K |
| W(C) ${ }^{2}$ 0... $2300^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,18 K |
| E -200... $900^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,038 K |

* 1 ) from $400^{\circ} \mathrm{C}$
* 2 ) W5Re/W26Re

With linearization (temperature-linear in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ )
Input resistance: $\geq 1 \mathrm{M} \Omega$
Cold-junction compensation (CJC): built in

## Input circuit monitor:

Current through sensor: $\leq 1 \mu \mathrm{~A}$
Reverse-polarity monitor is triggered at $10^{\circ} \mathrm{C}$ below span start.

## Additional error of internal CJC

$\leq 0.5 \mathrm{~K}$ per 10 K terminal temperature External temperature selectable: $0 . . .60^{\circ} \mathrm{C}$ or $32 \ldots 140^{\circ} \mathrm{F}$

## Resistance thermometer

Pt 100 to DIN IEC 751, and temperature difference $2 \times$ Pt 100

| Range | Error | Resolution |
| :--- | :--- | :--- |
| $-200.0 \ldots 250.0^{\circ} \mathrm{C}$ | $\leq 0.5 \mathrm{~K}$ | 0.024 K |
| $-200.0 \ldots 850.0^{\circ} \mathrm{C}$ | $\leq 1.0 \mathrm{~K}$ | 0.05 K |
| $2 x-200.0 \ldots 250.0^{\circ} \mathrm{C}$ | $\leq 0.5 \mathrm{~K}$ | 0.024 K |
| $2 x-200.0 \ldots 250.0^{\circ} \mathrm{C}$ | $\leq 0.1 \mathrm{~K}$ | 0.05 K |

Linearization in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
Two wire connection with compensation or three-wire connection without.
Two-wire connection with lead resistance adjustment.
Lead resistance: $\leq 30 \Omega$ per lead
Sensor current: $\leq 1 \mathrm{~mA}$
Input circuit monitoring for sensor/lead break, and lead short circuit.

## Potentiometric transducer

| $\mathrm{R}_{\text {tota }}$ incl. $2 \times \mathrm{R}_{L}$ | Error | Resolution |
| :--- | :--- | :--- |
| $0 . .500 \Omega$ | $\leq 0.1 \%$ | $\leq 0.02 \Omega$ |
| Resistance-linear |  |  |

Sensor current: $\leq 1 \mathrm{~mA}$
Matching/scaling with sensor connected.
Input circuit monitoring for sensor/lead break, and lead short circuit.

## Resistance input

| Range | Error | Resolution |
| :--- | :--- | :--- |
| $0 \ldots 250 \Omega$ | $\leq 0.25 \Omega$ | $<0.01 \Omega$ |
| $0 \ldots 500 \Omega$ | $\leq 0.5 \Omega$ | $<0.02 \Omega$ |

## Direct current 0/4...20mA

| Range | Error | Resolution |
| :--- | :--- | :--- |
| $0 / 4 \ldots 20 \mathrm{~mA}$ | $\leq 0.1 \%$ | $\leq 0.8 \mathrm{~mA}$ |

Input resistance: $50 \Omega$
Input circuit monitor with 4...20mA: triggered when I $\leq 2 \mathrm{~mA}$

## Direct voltage

| Range | Error | Resolution |
| :--- | :--- | :--- |
| $0 / 2 \ldots .10 \mathrm{~V}$ | $\leq 0.1 \%$ | $\leq 0.4 \mathrm{mV}$ |
| Input resistance $\geq 100 \mathrm{k} \Omega$ |  |  |

## Signal input INP5

## Differential amplifier input

Up to 6 controllers can be cascaded, if there is no other galvanic connection between them. If there is, only 2 inputs can be cascaded.

## Direct current and voltage

Technical data as for INP1, except for:
Limiting frequency: $=0.25 \mathrm{~Hz}$, Measurement cycle: 800 ms Input resistance (voltage): $\geq 500 \kappa \Omega$

## Signal input INP6

Limiting frequency: $=0.5 \mathrm{~Hz}$, Measurement cycle: 400 ms

## Potentiometric transducer

Technical data as for INP1, except for:

| R $_{\text {total }}$ inkl. $2 \times$ RL | Error | Resolution |
| :--- | :--- | :--- |
| $0 . .1000 \Omega$ | $\leq 0.1 \%$ | $\leq 0.04 \Omega$ |

## Direct current 0/4... 20 mA

Technical data as for INP1

## Signal inputs INP3, INP4 (option C)

Galvanically-isolated differential amplifier inputs.
Limiting frequency: fg = 1 Hz , Measurement cycle: 100 ms

## Direct current

Technical data as for INP1, except Ri=43 $\Omega$

## Control inputs di1...di12

di1, di2: standard
di3...d7: Option B
di8...di12: Option C

## Opto-coupler

Nominal voltage: 24 VDC, external
Current sink (IEC 1131 Type 1)
Logic „0" (Low): -3... 5 V, Logic „1" (High): 15... 30 V
Current demand: approx. 6 mA (for galvanic connections and isolation see page 25).

## Built-in transmitter supply (optional)

Can be used to energize a two-wire transmitter or up to 4 opto-coupler inputs.Galvanically isolated.
Output: $\geq 17.5 \mathrm{VDC}$, max. 22 mA
Short-circuit proof.

## Factory setting

The transmitter supply is available at terminals A12 and A14
See page 25, Configuration see page 21

## Outputs

## Relay outputs (OUT4, OUT5)

Relays have potential-free change-over contacts.
Max. contact rating:
500 VA, $250 \mathrm{~V}, 2$ A with $48 \ldots 62 \mathrm{~Hz}, \cos \varphi \geq 0,9$
Minimum rating: $12 \mathrm{~V}, 10 \mathrm{~mA} \mathrm{AC} / \mathrm{DC}$
Number of switching cycles electrical: for $1=1 \mathrm{~A} / 2 \mathrm{~A} \geq 800,000$ /
500,000 (at ~ 250V / (resistive load))
When connecting a contactor to a relay output, RC protective circuitry to specification of the contactor manufacturer is required. Varistor protection is not recommended!

## Outputs OUT1, OUT2

Relay or current/logic signal, depending on version:

## OUT1, OUT2 as current outputs

Galvanically isolated from the inputs
0/4... 20 mA , selectable
Signal range: 0 ... 22 mA
Resolution: $\leq 6 \mu \mathrm{~A}$ (12 bits)
Error: $\leq 0.5 \%$
Load: $\leq 600 \Omega$
Load effect: < 0.1\%
Limiting frequency: approx. 1 Hz Output cycle: 100 ms

## OUT1, OUT2 as logic signal

$0 / \geq 20 \mathrm{~mA}$ with a load $\geq 600 \Omega$
$0 />12 \mathrm{~V}$ with a load $\geq 600 \Omega$

## Output OUT3 (Option C)

Technical data as for OUT1, OUT2, as current output

## Control outputs do1..do6

Galvanic isolated Opto-coupler outputs, galvanic isolation see page 25 and text.
Grounded load: common positive control voltage
Switch rating: 18... 32 VDC; Imax $\leq 70 \mathrm{~mA}$
Internal voltage drop: $\leq 0.7 \mathrm{~V}$ with $I_{\max }$
Protective circuit: thermal, switches off with overload.
Supply 24 V DC external
Residual ripple $\leq 5 \%$ ss

## Modular Option C

Each module has two channels which can be configured independently.

## A/D-Converter

Resolution: $20,000(50 \mathrm{~Hz})$ or $16,667(60 \mathrm{~Hz})$ steps for the selected measuring range.
Conversion time: $20 \mathrm{~ms}(50 \mathrm{~Hz}$ ) or $16.7 \mathrm{~ms}(60 \mathrm{~Hz})$.

## D/A-Converter

Resolution: 12 Bit
Refresh-Rate: 100 ms

## Cut-off frequency

Analog: $\mathrm{fg}=10 \mathrm{~Hz}$
Digital: $\mathrm{fg}=2 \mathrm{~Hz}$
Measurement cycle: 100 ms per module

## R_INP Resistive input module

(9407-998-0x201)
Connection method: 2,3 or 4 -wire circuit (with 3 und 4 -wire connection, only one channel can be used).

## Sensor current:

$\leq 0,25 \mathrm{~mA}$

## Resistance thermometer

| Type | Range ${ }^{\circ} \mathrm{C}$ | Overall error | Resolution K/Digit |
| :--- | :--- | :--- | :--- |
| Pt100 | $-200 \ldots 850^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,071 |
| Pt100 | $-200 \ldots . \ldots 0^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,022 |
| Pt1000 | $-200 \ldots 850^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,071 |
| Pt1000 | $-200 \ldots . .100^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,022 |
| Ni100 | $-60 \ldots 180^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,039 |
| Ni1000 | $-60 \ldots 180^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,039 |

Linearization: in ${ }^{\circ} \mathrm{C}$ oder ${ }^{\circ} \mathrm{F}$
Lead resistance
Pt ( $-200 \ldots . .850^{\circ} \mathrm{C}$ ): $\leq 30 \Omega$ per lead
Pt ( $-200 \ldots . .100^{\circ} \mathrm{C}$ ), Ni: $\leq 10 \Omega$ per lead
Lead resistance compensation
3 and 4-wire connection: not necessary.
2 -wire connection: compensation via the front with short-circuited sensor. The calibration values are stored in a non-volatile memory.

## Lead resistance effect

3 and 4-wire connection: negligible
Sensor monitoring
Break: sensor or lead. Short-circuit: triggers at 20 K below measuring range.

## Resistance / Potentiometer

| Range $\mathrm{R}_{\text {ges }} / \Omega$ | Overall error | Resolution $\Omega /$ Digit |
| :--- | :---: | :---: |
| $0 \ldots 160 \Omega$ | $\leq 1 \%$ | 0,012 |
| $0 \ldots .450 \Omega$ | $\leq 1 \%$ | 0,025 |
| $0 \ldots 1600 \Omega$ | $\leq 1 \%$ | 0,089 |
| $0 \ldots .4500 \Omega$ | $\leq 1 \%$ | 0,025 |

Characteristic: resistance-linear
Lead resistance or 0\%/100\% compensation:
via the front with short-circuited sensor. The calibration values are stored in a non-volatile memory.

- Variable resistance (only 2 -wire connection): compensation for $0 \%$
- Potentiometer: compensation for $0 \%$ and $100 \%$


## Lead resistance effect

3 and 4-wire connection: negligible
Sensor monitoring:
break: sensor or lead

## TC_INP Thermocouple, mV, mA Module

(9407-998-0x211)

## Thermocouples

To DIN IEC 60584 (except L, W/C, D)

| Type | Range | Overall <br> error | K/Digit |
| :---: | :---: | :---: | :---: |
| $L$ | $-200 \ldots .900^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,080 |
| $J$ | $-200 \ldots 900^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,082 |
| K | $-200 \ldots . .1350^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,114 |
| N | $-200 \ldots . .1300^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,129 |
| S | $-50 \ldots .1760^{\circ} \mathrm{C}$ | $\leq 3 \mathrm{~K}$ | 0,132 |
| R | $-5 \ldots . .1760^{\circ} \mathrm{C}$ | $\leq 3 \mathrm{~K}$ | 0,117 |
| B | $(25) 400 \ldots 1820^{\circ} \mathrm{C}$ | $\leq 3 \mathrm{~K}$ | 0,184 |
| T | $-200 \ldots 400^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,031 |
| $\mathrm{~W}(\mathrm{C})$ | $0 \ldots \ldots 2300^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,277 |
| D | $0 \ldots .2300^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,260 |
| E | $-200 \ldots 900^{\circ} \mathrm{C}$ | $\leq 2 \mathrm{~K}$ | 0,063 |

* (1) Values apply from $400^{\circ} \mathrm{C}$

Linearization: in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
Linearity error: negligible
Input resistance: $\geq 1 \mathrm{M} \Omega$
Temp. compensation (CJC): built in
Error: $\leq 0.5 \mathrm{~K} / 10 \mathrm{~K}$
External CJC possible: $0 . . .60^{\circ} \mathrm{C}$ or. $32 . . .140^{\circ} \mathrm{F}$
Source resistance effect. $1 \mathrm{mV} / \mathrm{k} \Omega$

## Sensor monitoring:

Sensor current: $\leq 1 \mu \mathrm{~A}$
Reversed polarity monitor: triggers at 10K below measuring range

## mV input

| Range | Overall error | Resolution |
| :--- | :---: | :---: |
| $0 \ldots . .30 \mathrm{mV}$ | $\leq 45 \mathrm{mV}$ | $1,7 \mathrm{mV}$ |
| $0 \ldots .100 \mathrm{mV}$ | $\leq 150 \mathrm{mV}$ | $5,6 \mathrm{mV}$ |
| $0 \ldots 300 \mathrm{mV}$ | $\leq 450 \mathrm{mV}$ | 17 mV |

Input resistance: $\geq 1 \mathrm{M} \Omega$
Break monitoring: built in. Sensor current: $\leq 1 \mu \mathrm{~A}$

## mA input

| Range | Overall error | Resolution |
| :--- | :---: | :---: |
| $0 / 4 \ldots .20 \mathrm{~mA}$ | $\leq 40 \mu \mathrm{~A}$ | $2 \mu \mathrm{~A}$ |

Input resistance: $10 \Omega$
Break monitor. $<2 \mu \mathrm{~A}$ (only for $4 . . .20 \mathrm{~mA}$ )
Over range monitor. >22mA
U_INP High-impedance voltage input
(9407-998-0x221)

| Range | Overall error | Resolution mV/Digit |
| :--- | :---: | :---: |
| $-50 . .1500 \mathrm{mV}$ | $\leq 1,5 \mathrm{mV}$ | 0,09 |
| $0 \ldots . .10 \mathrm{~V}$ | $\leq 10 \mathrm{mV}$ | 0,56 |

Characteristic: voltage-linear
Input resistance: $>1 \mathrm{G} \Omega$
Source resistance effect. $\leq 0,25 \mathrm{mV} / \mathrm{M} \Omega$
Sensor monitoring: none

## U_OUT Voltage output module

(9407-998-0x301)
Signal ranges: 0/2...10V, -10...10V configurable
Resolution: approx.. $5.4 \mathrm{mV} /$ digit
Load: $\geq 2 \mathrm{k} \Omega$
Load effect: $\leq 0.1 \%$

## I_OUT Current output module

(9407-998-0x311)
Signal ranges: 0/4...20mA, -20...20mA configurable by channel
Resolution: ca. $11 \mu \mathrm{~A} /$ Digit
Load: $\leq 400 \Omega$
Load effect: $\leq 0.1 \% / 100 \Omega$

## DIDO Digital I/O Module

(9407-998-0x401)
Number of channels: 2 (configurable as input or output by channel)

## Input

Current sink: to IEC 1131 Type 1)
Logic „0": -3...5V, Logic „1": 15...30V
Measurement cycle: 100 ms
Galvanic isolation : via opto-couplers
Nominal voltage: 24 VDC external
Input resistance: $5 \mathrm{k} \Omega$

## Output

Grounded load (common positive control voltage)
Switch rating: 18... 32 VDC; $\leq 70 \mathrm{~mA}$
Internal voltage drop: $\leq 0.7 \mathrm{~V}$
Refresh-Rate: 100 ms
Galvanic isolation : via opto-couplers
Protective circuit. thermal, switches off with overload.

| F_INP Frequency/counter Module |
| :---: |
| (9407-998-0x411) |
| Current sink: to IEC 1131 Type 1 <br> Logic „0": -3...5V <br> Logic „1": 15...30V |
| Galvanic isolation: via Opto-couplers |
| Nominal voltage: 24 VDC external Input resistance: $12 \mathrm{k} \Omega$ |
| Selectable functions: <br> - Control input (2 channels) <br> - Pulse counter (2 channels) <br> - Frequency counter (2 channels) <br> - Up/down counter (1 channel) <br> - Quadrature counter (1 channel) |
| Frequency range: $\leq 20 \mathrm{kHz}$ |
| Signal shape: any (square 1:1 with 20kHz) |
| Gate time: 0.1...20s adjustable (only relevant with frequency measurement) |
| Influencing factors |
| Temperature effect. $\leq 0,1 \% / 10 \mathrm{~K}$ |
| Supply voltage: negligible |
| Common mode interference: negligible up to 50 Vrms |
| Series mode interference: negligible up to 300 mVrms (TC), 30 mVrms (RT), 10 Vrms (U), 5 Vrms (F) |

## CAN I/O extension

The unit offers a port conforming to CANopen for connection of the RM 200 system and of KS 800 or additional KS 98-1 units with max. five CAN nodes.

## [198

Control inputs di1 and di2 are not available !
[気 Modular option C is not available

## Power supply

Dependent on version:

## Alternating current

90... 250 VAC

Frequency: 48... 62 Hz
Power consumption: approx. 17,1 VA; 9,7 W (max. configuration).

## Universal current 24 V UC

24 VAC, 48 ... 62 Hz/24 VDC
Tolerance: +10...-15\% AC 18...31.2 VDC
Power consumption AC: approx. 14.1 VA; $9.5 \Omega$
DC: 9,1 W (max. Configuration).

## Behaviour after power failure

Storage in non-volatile EEPROM for structure, configuration, parameter setting and adjusted setpoints.
Storage in a capacitor-buffered RAM (typ. > 15 minutes) for data of time functions (programmers, integrators, counters, ...)

## Real-time clock(Option B, RS 422)

Buffer capacitor provides back-up for at least 2 days (typical).

## Bus interface (Option B)

## TTL and RS422 / 485-interface

Galvanically isolated, choice of TTL or
RS 422/485 operation.

## Number of multi function unitsper bus:

With RS 422/485: 99
With TTL signals: 32 interface modules (9404 429 980x1). Address range ((00...99)See Documentation 9499-040-82911) .

## PROFIBUS-DP interface

According to EN 50 170, Vol. 2.
Reading and writing of all process data, parameters, and configuration data.

## Transmission speeds and cable lengths

automatic transm. speed detection, $9,6 \mathrm{kbit} / \mathrm{s}$... $12 \mathrm{Mbit} / \mathrm{s}$

## Addresses

0... 126 (factory setting: 126).Remote addressing is possible.

## Other functions

Sync and Freeze

## Terminating resistors

Internally selectable with wire-hook switches.

## Cable

According to EN 50 170, Vol. 2 (DIN 19 245T3).

## Required accessories

Engineering Set PROFIBUS-DP, consisting of:

- GSD file, Type file
- PROFIBUS manual (9499-040-82911)
- Function block(s) for Simatic S5/S7


## Electromagnetic compatibility

Complies with EN 50 081-2 and EN 50 082-2.

## Electrostatic discharge

Test to IEC 801-2,
8 kV air discharge
4 kV contact discharge

## High-frequency interference

Test to ENV 50140 (IEC 801-3)
80...1,000 MHz, $10 \mathrm{~V} / \mathrm{m}$

Effect: $\leq 1 \%$

## HF interference on leads

Test to ENV 50141 (IEC 801-6)
$0.15 \ldots 80 \mathrm{MHz}, 10 \mathrm{~V}$
Effect: $\leq 1 \%$

## Fast pulse trains (burst)

Test to IEC 801-4
2 kV applied to leads for supply voltage, and signal leads.
Effect: $\leq 5 \%$ resp. restart

## High-energy single pulses (surge)

Test to IEC 801-5
1 kV symmetric or 2 kV asymmetric on leads for supply voltage. 0.5 kV symmetric or 1 kV asymmetric on signal leads.

## I-4 Versions

The instrument version results from the combination of various variants from the following table.

Fig. 2
Please mind footnotes! KS98-1 with screw terminals only!


1) Not possible with Modular Option C! RM 200 not included in cULus approval !
2) Not possible with CANopen ! I/O modules must be ordered separately! Mind possible combinations and power limitations; $\rightarrow$ Text!
3) Detailled system manual can be ordered separately or downloaded (www.pma-online.de)

## I-4.1 I/0-Modules

Can be installed on instruments with modular option C basic card.
Fig. 3 Table of I/O-module Versions

3) Please note on your order: "mounted in KS98-1 in orderposition X"
4) Max. 1 current output module

## 1-4.2 Ex-factory setting

All delivered units permit operation, parameter setting and configuration via the front-panel keys.
Instruments with default setting are delivered with a test engineering which permits testing of the basic instrument in puts and outputs (no l/O extension) without auxiliary means.

This engineering is not suitable for controlling a system. For this purpose, a customer-specific engineering is required (see versions, section: Setting)

Instruments with "setting to specification" are delivered complete with an engineering. Code no. KS $98-1-1 x x-x x 09 x-x x x$ is specified on the type label.

## Accessories delivered with the instrument:

Operating manual, 4 fixing clamps

## I-4.3 Auxiliary equipment

## Engineering Tool ET/KS 98

## Simulation SIM/KS 98-1

## PC-Adapter

- Adapter cable for connecting a PC (Engineering Tool) to the front-panel interface socket of the KS 98-1.
- Updates and Demos on the PMA- Homepage (www.pma-online.de)


## I-5 Mounting



Fig. 4 Mounting

The instrument must be installed as described below. Required dimensions of the control cabinet cut-out and minimum clearances for installation of further units are shown in the drawing.

For mounting, insert the unit into the control cabinet or cabinet door cut-out. Push the instrument module fully home and mount it firmly by means of the locking screw. Four fixing clamps are delivered with the unit.

Fig. 5 Inserting the locking screws
(1) These clamps have to be fitted in the instrument from the control cabinet inside: 2 at top and bottom.


- A rubber seal is fitted on the rear of the instrument front panel (in mounting direction).

This rubber seal must be in perfect condition, flush and cover the cut-out edges completely to ensure tightness!

## cULus certification

For compliance with cUus certificate, the technical data at the beginning must be taken into account (see technical data, page 12.

## I-5.1 Function of wire-hook switches

For closing the wire-hook switches, release the locking screw, withdraw the instrument module from the housing and close the wire-hook switch. Re-insert the instrument and lock it.

## Ex-factory setting

| S | open |
| :--- | :--- |
| DP | open - terminating resistor not active |
| CAN | open - terminating resistor not active |
| TPS | A $14 / 12$ |

## The unit contains electrostatically sensitive components. Comply with rules for protection against ESD during mounting. <br> <br> Wire-hook switch S:

 <br> <br> Wire-hook switch S:}The switching status is signalled by function STATUS and can be used in the engineering for blocking e.g. operating pages and other settings.

## Wire-hook switch for PROFIBUS DP (Option B):

The bus terminating resistor can be connected by 2 wire-hook switches (DP) in KS98-1.Both wire-hook switches must always be open or closed.

## Wire-hook switch for CAN bus: (only Option CANbus):

Both ends of the CAN bus must be terminated (wire-hook switch closed).

## Wire-hook switch for transmitter supply

Versions (KS98-11x-xxxxx) with transmitter supply are provided with a potential-free supply voltage for energization of a 2-wire transmitter, or of max. 4 control inputs.

The output connections can be made to terminals A4(+) - A1(-) by means of 3 wire-hook switches.
If $\mathrm{A} 14 / \mathrm{A} 12$ is used for di1/di2, A 12 must be linked with A 1 .

| Connectors |  | $(1)$ | (2) | (3) | Remarks |
| :---: | :---: | :---: | :---: | :---: | :--- |
| $\mathbf{1 4 ( + )}$ | $\mathbf{1 2 ( - )}$ | $\mathbf{T}$ | open | closed | Only available with INP1 configured for current or thermocouple |
| $\mathbf{4}(+)$ | $\mathbf{1}(-)$ | $\mathbf{D}$ | closed | open | The voltage input of INP5 is then not available |

Fig. 6 Position of wire-hook switches



## 1-5.2 Retro-fiting and modific. of $/ \mathbf{1}$-ext. (*watch connecting diagram)

Only for instruments with modular option C!
$\Delta$
The instrument contains electrostatically sensitive components. Original packing protects against electrostatic discharge (ESD), transport only in original packing.

- When mounting, rules for ESD protection must be taken into account.


## Connection:

KS 98-1 engineering must be taken into account, because it determines pin allocation and signification of connections.
Moreover, the rules for the performance limits must be followed (see manual $\rightarrow$ 9499-040-82711).

## Mounting

After releasing the locking screw, withdraw the KS 98-1 module from the housing.
a Insert the module into the required socket with the printed label pointing down-wards into the green connector and click it in position in the small, white contact $\underline{\boldsymbol{b}}$ at the top.


The various modules can be identified by the printed label.
The last 5 digits of the order number are given in the upper line.

## I-5.3 //0 extension with CANopen

The unit offers a CANopen-compliant interface port for connection of the RM 200 system, KS 800 or additional KS 98-1 units with max. five CAN nodes. See installation notes in the CANopen system manual (9499-040-62411).

## I-6 Electrical connections - Safety hints

## Following the safety notes starting on page 6 is indispensable!

The installation must be provided with a switch or power circuit breaker which must be marked accordingly. The switch must be located near the instrument and readily accessible for the operator.

## 4

When the instrument module is withdrawn from the housing, protection against dropping of conducting parts into the open housing must be fitted.

The protective earth terminal (P3) must be connected to the cabinet ground. This applies also to 24 V supply.

## I-6.1 Electromagnetic compatibility

European guideline 89/336/EEC. The following European standards are met: EN 61326-1.
The unit can be installed in industrial areas (risk of radio interference in residential areas). A considerable increase of the electromagnetic compatibility is possible by the following measures:

- Installation of the unit in an earthed metal control cabinet.
- Keeping power supply cables separate from signal and measurement cables.
- Using twisted and screened measurement and signal cables (connect the screening to measurement earth).
- Providing connected motor actuators with protective circuitry to manufacturer specifications. This measure prevents high voltage peaks which may cause trouble for the instrument.


## I-6.2 Measurement earth connection

Measurement earth connection is required for protection against interference. External interference voltages (incl. ra dio frequencies) may affect the perfect function of the device.
To ensure protection against interference, the measurement earth must be connected to cabinet ground.
Terminals A11(measurement earth) and P3 (protective earth) must be connected to cabinet ground via a short cable (approx. 20 cm )! The protective earth conductor of the power supply cable must also be connected to this earth poten tial (cabinet ground). $\rightarrow$ See also diagram on page 24

## I-6.3 RC protective circuitry

Load current free connections between the ground po- Fig. 8 Protective circuitry tentials must be realized so that they are suitable both for the low-frequency range (safety of persons, etc.) and the high-frequency range (good EMC values). The connections must be made with low impedance.

All metal grounds of the components installed in the cabinet (1) or in the cabinet door (2) must be acrewed directly to the sheet-metal grounding plate to ensure good and durable contact.

In particular, this applies to earthing rails (4), protective earth rail (5), mounting plates for switching units (7) and door earthing strips (6) .Controllers KS40/50/90 (8) and KS98-1 (9) are shown as an example for earthing.

The max. length of connections is 20 cm (see relevant operating instructions).

Generally, the yellow/green protective earth is too long to provide a high-quality ground connection for high-frequency interferences.

Braided copper cables (3) provide a high frequency conducting, low-resistance ground connection, especially for connecting cabinet (1) and cabinet door (2).


Because of the skin effect, the surface rather than the cross section is decisive for low impedance. All connections must have large surfaces and good contact. Any lacquer on the connecting surfaces must be removed.

Due to better HF properties, zinc-plated mounting plates and compartment walls are more suitable for large-surface grounding than chromate mounting plates.

## I-6.4 Galvanic isolation

Galvanically isolated connection groups are marked by lines in the connecting diagram.

- Measuring and signal circuits: functional isolation up to a working voltage $\leq 33$ VAC / 70 VDC against earth (to DIN 61010-1; dashed lines).
- Mains supply circuits $90 \ldots 250$ VAC, 24 VUC: safety isolation between circuits and against earth up to a working voltage $\leq 300$ Vr.m.s. (to EN 61010-1; full lines).
- Instruments with I/O extension modules (KS98-1xx-x3xxx and KS98-1xx-x4xxx): sockets 1-2 and 3-4 are galvani call isolated from each other and from other signal inputs/outputs (functional isolation).


## I-6.5 General connecting diagram



The max. permissible working voltage on input and signal circuits is 33 VAC / 70 VDC against earth! Otherwise, the circuits must be isolated and marked with warning label for "contact hazard".
The max. permissible working voltage on mains supply circuits may be 250 VAC against earth and against each other! Only on versions with transmitter power supply (factory setting: connection across terminals A12-A14)
Additionally, the units must be protected by fuses for a max. power consumption of 12,3VA/7,1W per instrument individually or in common (standard fuse ratings, min. 1A)!

Fig. 9 connecting diagram


For instruments with modular option $\mathrm{C} \rightarrow$ see connecting diagram on page 28


The protective earth must be connected also with 24 V DC / AC supply (see safety notes on page 23 ).
The polarity is uncritical.
Only on versions with transmitter power supply (factory setting: connection to terminals A12-A14).
Connection of the transmitter power supply is determined by the wire-hook switch $\rightarrow$ page 21.

## I-6.6 Analog inputs

## Thermocouples

see general connecting diagram on page 25. No lead resistance adjustment.

## Internal temperature compensation:

compensating lead up to the instrument terminals.
With AINP1, STK = int. © TC: must be configured.

## External temperature compensation:

Use separate cold junction reference with fixed reference temperature.
Compensating lead is used up to the cold junction reference. Copper lead between reference and instrument. With AINP1, $\mathbf{S T K}=$ Ext. © TE: and TKref = reference temperature must be configured.

## Resistance thermometer

Pt 100 in 3-wire connection.
Lead resistance adjustment is not necessary, if RL1 is equal RL2.


## Resistance thermometer

Pt 100 in 2-wire connection. Lead resistance adjustment is necessary: Ra must be equal to RL1 + RL2.


## Two Resistance thermometer

Pt100 for difference. Lead resistance compensation: proceed as described in chapter calibration page $27-\mathrm{I}-9.4$.

## Resistance transducer

Measurement calibration $\rightarrow$ proceed as described in chapter calibration page $27-\mathrm{I}-9.4$.


## Standard current signals 0/4... 20 mA

Input resistance: $50 \Omega$, configure scaling and digits behind the decimal point.

## Standard voltage signals 0/2...10V

Input resistance: $\geq 100 \mathrm{k} \Omega$
(Voltage input module U_INP: >1 G $\Omega$ ),
configure scaling and digits behind the decimal point.

INP5 is a difference input, the reference potential of which is connected to terminal A9. With voltage input, A6 must always be connected to A9.


The inputs INP1 / INP6 are interconnected (common reference potential). This must be taken into account if both inputs must be used for standard current signal. If necessary, galvanic isolation should be applied.

## I-6.7 Digital in- and outputs

The digital inputs and outputs must be energized from one or several external 24 V DC sources. Power consumption is 5 mA per input. The max. load is $70 \mathrm{~m} \mathrm{~A} \mathrm{per} \mathrm{output}$.

Examples:
Digital inputs (connector A)


Digital inputs and outputs at one voltage source (e.g. connector B) 70 mA !


Digital inputs and outputs at two voltage sources (e.g. connector B)


## I-6.8 Connecting diagram i/o-modules

(Modular Option C)
CAN and modular option C are mutually precluding.
The inputs and outputs of multi-function unit KS98-1 can be adapted to the individual application by means of "modu lar optionC". The supporting card is firmly installed in the unit.

The card contains four sockets for various I/O modules which can be combined, whereby the positions of the various connection types are dependent on engineering.

The KS98-1 programming personnel must provide a connecting diagram corresponding to the block diagram ( $\rightarrow$ page ) for installation of the device.


## I-7 Commissioning

Before switching on the instrument, ensure that the following points are taken into account:

- The supply voltage must correspond to the specification on the type label!
- All covers required for contact protection must be fitted.
- Before operation start, check that other equipment in the same signal loop is not affected. If necessary, appropri ate measures must be taken.
- The unit is freely configurable. For this reason, the input and output behaviour is determined by the loaded engi neering. Before commissioning, make sure that the right instructions for system and instrument commissioning are available.

Unless an application-specific engineering was loaded, the unit is equipped with the 10 test engineering described on page 49
Before instrument switch-on, the plant-specific input and output signal types must be adjusted on the in strument, in order to avoid damage to the plant and to the device.
On instruments without default setting, partial I/O signal testing is possible.

## The effect on connected equipment must be taken into account.

After supply voltage switch-on, start-up logo and livirimern weit ! are displayed, followed by display of the main menu during several seconds .

Unless a selection is made during this time, the first operating page (e.g. a controller) is displayed automatically, wit hout marking a line or a field.

## I-8 Operation

The operation of the device is menu-guided. The menu is divided into several levels which can all be influenced via the engineering, i.e. the final scope of the menu is dependent on the engineering.
This manual describes the operating functions which are independent of the engineering.

## I-8.1 Front view

LEDs (1)(2)(3)(4):
for indication of conditions determined by the engineering, e.g. alarms or switching states.

Fig. 11


The two significations of the selector key are dependent on
(6) (7) (11) (10) (9) the selected field:

- Pressing the selector key (confirmation / Enter): starts page changing,
- starts value alteration via the up/down keys and confirms the adjustment subsequently ( $\rightarrow$ page 32).

The functions of the auto/manual key are dependent on operating page, i.e. this key is sometimes called function key.

- Controller: auto/manual switchover
- Programmer: programmer control
- Adjustment of digital values.
(5) Locking screw:
for locking the instrument module in the housing
(6) PC interface:

PC interface for engineering tool ET/KS98 and BlueControl. The tools permit structuring/soft-wiring/configurati on/parameter setting/operation.
(8) Display/operating page:

- LCD point matrix ( $160 \times 80$ dots),
- changeable green/red back lighting, direct/inverse display mode.

Display is dependent on configured functions.

## I-8.2 Menu structure

The main menu is the uppermost menu level. Its structure is fixed and independent from the engineering.


Fig. 12

## I-8.3 Navigation, page selection

Operation of the device is by keys $\square$ and $\boldsymbol{\nabla}$. After pressing key $\square$ during 3 seconds, the main menu is always displayed.
When the main menu is disabled the user menu is displayed.

## Fig. 13 Example: Parameters



## Procedure

(1) Press $\boldsymbol{\Delta}$ to select the input field or the line (the selected item is shown inversely).
(2) Confirm the entry with (for selecting).
(3) a) If the selected item is a page, the page is opened and navigation can be continued with the $\Delta \boldsymbol{\nabla}$ keys.
(3) b) If an input field was selected, the field starts blinking after pressing key $\square$ and the required change can be entered with the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ keys. Confirm with key $\square$. The input field stops blinking and the alteration is saved .
(4) For exit from a page, scroll to menu item "End" at the bottom of the list. When selecting ( $\square$ ), the next higher menu level is displayed.

Scrolling up is possible.
When exceeding the uppermost menu item, menu item "End" is displayed.
Unless display of a page is inverse despite actuation of keys $\Delta \boldsymbol{\nabla}$, the items were disabled (e.g. via engineering. An inverse menu item which cannot be altered is also disabled.

## Operating pages:

These pages offer an additional navigation function:

- Continuation or previous pages (marked by an arrow at the bottom ( $\boldsymbol{\nabla}$ ) or top ( $\mathbf{\Delta}$ ) of the page) can be activated by selecting and pressing key
- Items marked with $\rightarrow$ open another operating page when selecting $(\Delta \boldsymbol{\nabla})$ and confirming with key $\square$.

Menu item "End" is not provided on operating pages. Scroll until nothing is selected any more (no input field/line is shown inversely) and press key $\square$ to go to the next higher menu level.


Fig. 14

## I-8.4 Adjusting values

The menu operating pages include various types of fields for adjustment of values:

- analog values, digital values
- selection lists
- times
- on/off switches
- push-buttons
- selector switches (radio button)


## Adjustment procedure

Select the value to be altered with keys $\boldsymbol{\Delta} \boldsymbol{\nabla}$.
a) Press key $\square$ to start value changing (field blinks). Change the value with keys $\Delta \boldsymbol{\nabla}$. Press $\square$ to store the change (field stops blinking).

Fig. 15 Example: Value adjustment bargraph

b) The longer keys up/down are pressed, the higher is the acceleration. When releasing, the adjustment speed decrea ses accordingly.

Fig. 16 Key 圆. This mode of adjustment is for switches, push-buttons and selector switches.


## I-9 Instrument settings in the main menu

## I-9.1 CAN-Status

The CAN bus status with the connected units is displayed.


## I-9.2 Profibus-Status

The Profibus status page provides information on the Profibus connection status. The following error statuses are displayed:

- Bus access not successful
- Faulty parameter setting
- Faulty configuration
- No data communication



## I-9.3 ModC-Status

The status page of the modular $C$ card provides information on correct installation. Possible faulty installations are displayed:

- Difference of configured and fitted module type
- Power limits exceeded



## 1-9.4 Calibration

Press $\Delta \boldsymbol{\square}$ to select the input and $\square$ to open the calibration page.

## Transducer input:

Adjusting the transducer start and end:
(1) Select Duit. Set transducer to start
(2) Press $\rightarrow$ Quit blinks
(3) Press $\boldsymbol{\Delta} \rightarrow$ Set $\mathbf{6} \%$ blinks
(4) Wait until the input has settled (min. 6 s )

(6) Set transducer to end

(8) Press $\Delta 3 x \rightarrow$ Eet. $1 \mathbf{1 0} \%$ blinks
(9) Wait until the input has settled


Calibration is finished. For exit from calibration press $\boldsymbol{\nabla}$ until nothing is marked and then press $\square$.

## Two resistance thermometers:

Calibration of lead resistance effect
(1) Select Duit.

Short-circuit both thermometers in the connecting head
(2) Press$\rightarrow$ Qut. blinks
(3) Press $\boldsymbol{\Delta} \rightarrow$ Set. Dif blinks
(4) Wait until the input has settled (min. 6 s)
(5) Press $\rightarrow$ C.El dorme is displayed

Lead resistance adjustment is finished. Remove both short circuits. For exit from calibration press $\boldsymbol{\nabla}$ until nothing is marked and then press.


## I-9.5 Online/Ofiline

For configuration changing, switch the unit to 'Offline' and back to 'Online' after alteration.
When switching the unit to status off-line, the outputs will remain in the status at switch-over time !!!
[18)
By switching over to on-line, all data is saved.
-8
When terminating the off-line mode by cancellation (Escape config.) the data saved last is loaded back into the wor king memory.

## I-10 Operating pages

The engineering determines the scope of available operating pages. All available pages are listed in the operating page menu. The various types of pages are explained below.

## I-10.1 List display

The operating page list is intended for display/input of process values and parameters.

Apart from digital, analog and time values, values of type radio button, switch and push-button can be defined in the value listing $(\rightarrow$ page 33).


## I-10.2 Bargraph display

The bargraph page is used for display of two analog variables as a bargraph.
Two further variables can be displayed and changed numerically and need not correspond with the bargraph values.

Four further analog inputs can be used to position two markers at the bargraph side, e.g. for indication of the alarm li mit or reference values. When exceeding the limits, an arrow $\boldsymbol{\nabla}$ is displayed at the top and bottom end of the bargraph $\boldsymbol{\nabla}$ (see page 49).

Fig. 17


## I-10.3 Alarm display

Alarm display is in the order of occurrence on a list.
One alarm per line is displayed:

Alarm active
Alarm active and ackn.
Alarm not active any more and not acknowledged
Alarm not active any more
alarm text blinks
Alarm text



## Acknowledging an alarm

Select an active alarm for acknowledging with $\Delta \boldsymbol{\nabla}$ and acknowledge it with $\square$. New alarms are displayed only when rebuilding the page, which is done by pressing key 융.

## I-10.4 Graphic trend curve

The time curve of a process is displayed graphically on the trend page.

Fig. 18


## Zoom value scale

The value axis can be zoomed by factor 1:4 (cut-out magnification).
Select the "zoom" field (4), press $\square$, the zoom symbol changes. Now, scaling can be changed by means of keys $\Delta \boldsymbol{\nabla}$.
The scaling is shifted in steps of $12,5 \%$ via field (3).

## Shift of time axis:

Earlier values than those visible in the actual window are also displayed by the trend function (Shift). Values left of the time axis are earlier values. These values can be displayed by changing the origin of the time axis.
Select field (7) with $\boldsymbol{\Delta} \boldsymbol{\nabla}$ and shift the scale origin by changing the value.
Symbol
(9) indicates the shift.

When resetting the time scale to 0 , the shift is switched off.

## I-10.5 Programmer

- A programmer controls the process sequence of a plant.
- Programmers are configurable freely in structure and scope by means of the engineering.
- A programmer is composed of any number of s (analog values) and control values (digital control bits).
- Any number of programs (recipes) can be stored for a programmer.
- The program is divided into a defined number of segments (program segments).
- The maximum number of segments is determined in the engineering.
- The maximum scope is defined in the engineering.

The actual status of a running program is displayed on the programmer operating page. Dependent on programming, status (run/stop, auto/manual), segment number, net time and the actual (during manual operation) can be changed.
Programmer operation is divided into:

- Program control and monitoring
- Program (recipe) selection
- Adjustment of setpoints/control bits during manual operation
- Parameter setting for program

Dependent on engineering, parts of this operation can be changed or disabled.
Display of the operating page is always related to one programmer output, whereby analog s and digital control bits are distinguished. Change to the next programmer output is via field (6) in the title.

Fig. 20


Fig. 19

(1) Name of operating page
(2) Program name/no. (recipe)
(3) [Process value]
(4) Actual segment no.
(5) Status line
(6) Programmer output switchover
(7) /control value
(8) Setpoint from...to in the current segment
(9) Remaining segment time
(10) Elapsed program time
(11) Remaining program time
(12) Program status (stop,run,reset,search, program,quit,error)
(13) auto/manual
(14) halt, end

## Selecting a program

Selection of a program is by alteration of recipe field(2) . Dependent on engineering, selection is from a text list or by entry of a number.

- Program selection is possible only in status "reset".


## Controlling a program

Press key 융 to control the program sequence:
The time curve can be controlled also by changing the elapsed time (10) or segment number (4) (preset).

Dependent on engineering, parts of this operation may be changed or disabled.


END


RESET

## Program parameter setting

Select the program for editing via field "Rec" (2). Call up the relevant s/control values, segment times and types with menu item "program" in the status line (field (12) ).

A page on which the selected program is displayed as "RecEdt" is opened. The parameters are listed in the order of segments.

The data blocks are displayed dependent on engineering. The type of individual segments can be changed dependent on data block type.

Selection of all programs including the inactive ones is possible on line F EGEdt. in any programmer status.

When using recipe names, these names are displayed on the editing page. Switching over to the parameters of a different recipe can be done by altering the recipe name. This is possible at any time and does not cause switchover of the active recipe.

A segment list is completed with end identification --: -- in parameter $T p_{n}$ of the last segment. When setting the last segment time $T_{n}$ to a valid value (higher or equal to 0 ), the next parameter is displayed automatically $\mathrm{T}_{\mathrm{n}+1}=-\mathbf{:}$-- etc.

This procedure permits shortening of a current program by adjusting a value $<0$ in the required position for $T_{n}=$ --: -- with key $\boldsymbol{\nabla}$.

The following segments will be suppressed in the program. The relevant segment parameters remain unchanged and can be re-activated by input of a valid value for $T_{n}$.

## Fig. 21



## Segment types

Dependent on segment type, the following parameters can be altered:

```
Wp i Target setpoint
D i Control value in segment i
Tpi Segment duration
Rt i Segment gradient
Typ i Segment type
```


## Ramp segment (time)

With a ramp segment (time), the runs linearly from the start value (end of previous segment) towards the target (Wp) of the relevant segment during time Tp (segment duration).


## Ramp segment (gradient)

With a ramp segment (gradient), the runs linearly from the start value (end value of previous segment) towards the target value (Wp) of the relevant segment. The gradient is determined by parameter Rt.


## Hold segment

With a hold segment, the end of the previous segment is output constantly during a defined time which is determined by parameter Tp.


## Step segment

With a step segment, the program goes directly to the value specified in parameter Wp.
The reached due to the step change is kept constant during the time determined in parameter Tp .


## Waiting and operator call

All segment types can be combined with "Wait at the end and operator call".
If a segment with combination "wait" was configured, the programmer goes to stop mode at the segment end. Now, the programmer can be restarted by pressing the 0 -key.


Fig. 22
(1) Segment type = Time
(2) Segment type = Hold
(3) Segment type = Time and wait
(4) Segment type = Gradient

## Manual mode

The programmer output can be overwritten for each page.
For this, the relevant page must be switched off to "manual" (13). In this mode, the or control value can be overwritten (7). The control value is changed separately for each control bit. Press to continue.

Field (13) permits returning to the automatic mode( $\rightarrow$ page 38).

The program run is not interrupted by the manual mode.

## I-10.6 Controller

The controller page permits intervention into process control loops. Input fields (, source, correcting variable during manual mode, parameter set switchover) are selected via the $\Delta \nabla$ key, pure display fields are skipped.

Dependent on engineering, the input fields can be disabled.

Fig.23: Controller operation

(1) Page title
(2) source (Wint, Wext, W2)
(3) Physical unit
(4) Bargraph of correcting variable Y or XW or Xeff
(5) Entrance into the self-tuning page
(6) Effective process value
(7) Controller
(8) Value of correcting variable Y or XW or Xeff
(9) Self-tuning/command input status
(10) Self-tuning result heating
(11) Process characteristics heating
(12) Self-tuning result cooling
(13) Process characteristics cooling

Apart from entries and switchover operations, further actions can be started: Switching over to manual operation is done via key 웅 and field - (5) provides access to the controller self-tuning page.

## Input fields on the operating page

## Manual value adjustment

This field can be used to adjust the correcting variable during manual operation. Adjustment is enabled only during manual operation. Unless manual operation is active, the field cannot be selected.
When changing over to manual operation, the bargraph display is always switched over to Y display (correcting variable), also with X1 or XW defined in the configuration. The actual correcting variable is displayed right beside the bargraph.

Fig. 24:Correcting variable adjustment via the front panel


## Manual correcting variable

Alteration of manual correcting variable (8) by means of keys $\Delta \boldsymbol{\nabla}$ is at three speeds.
Press the key to start the adjustment at a speed of $1 \% / \sec$. After 3 sec., switchover to $2.5 \% / \mathrm{sec}$ occurs and switchover to $10 \% / \mathrm{sec}$. is after another 3 sec.

The internal can be altered at any time, also when another is active.

## source

source switchover is possible via a selection field on the controller page.
Dependent on controller configuration, selection of Wint, Wext and W2 is possible.
The field can be left with Quit, if no switchover is needed,

Fig. 25 : adjustment via the front panel


Fig. 26 Front-panel switchover


## Self tuning

Determination of the optimum process parameters is possible by self-tuning. Self-tuning is available for processes with compensation and no delay time.
Dependent on controller type, parameters $\mathbf{X}_{\mathrm{F} \cdot 1}, \mathrm{X}_{\mathrm{F}} \mathbf{2}, \mathrm{T}_{\mathrm{n}}, \mathrm{T} \mathbf{V}, \mathrm{T}_{\mathrm{F}} \mathbf{1}, \mathrm{T}_{\mathrm{F}} \mathbf{2}$ are determined.

## Preparation

- Adjust the desired controller behaviour.
- $e=\mathbf{0}$.
- P-controller: $\quad \operatorname{Tr}=\mathbf{0}, \mathbf{0} \mathbf{0}=\mathbf{0}$

Pl-controller: $\quad$ Trı $>\mathbf{0} . \mathbf{0} \quad T \mathrm{~V}=\mathbf{0}, \mathbf{0}$
PID- controller: $\quad$ Trı $>\mathbf{0} . \mathbf{0} \quad T \mathbf{V}>\mathbf{0}, \mathbf{0}$
- If a controller has several parameter sets, selection of the parameter sets to be optimized is required (( $\left.\mathrm{FO}_{\mathrm{O}}^{\mathrm{F}} \mathrm{t}=1 \ldots 6\right)$. If necessary, these settings must be made available when creating the engineering ).
- Switch the controller to manual mode (key 圆). Alter the correcting variable to reach the working point.

The process must be in a stable condition. Self-tuning starts only, when process value oscillations are smaller than $0.5 \%$ of the control range during one minute (controller display:, process at rest' (PiR)).

If necessary, other control loops in the plant must be set to manual mode as well.
Fig. 27 Calling up the self-tuning page


## reserve:

To permit self-tuning, the distance between setpoint and process value must be higher than $10 \%$ of the setpoint range before self-tuning start.
With inverse controllers, the must be higher than the process value. With direct controllers, it must be smaller. The determines a limit which is not exceeded during self-tuning.

## Self-tuning start

Select function St.at: OFF OKK and confirm it with $\square$. St. Et : OFF/ OK blinks and is switched over to St.et. St.art. by pressing $\triangle$.

Pressing key starts the self-tuning attempt. The can be changed also subsequently. After successful self-tuning, the controller changes to automatic operation and controls the with the new parameters.

When 'Process at rest' ( $\mathbf{F} \mathbf{i F}$ ) is detected and a sufficient reserve is provided, the correcting va-

Fig.: 26 Self-tuning with heating and cooling
 riable is changed by output step (increased with indirect controller, decreased with direct controller).

The size of the output step change is set to $100 \%$ as standard. In critical processes, this value (parameter dYopt) may have to be reduced to prevent damage to the process. The parameter is adjustable in the engineering, or via the para meter dialogue of the main menu, if the engineering is known. In case of doubt, contact the programming engineer.

When self-tuning is finished with an error (Ad.encro or ble is output until self-tuning is finished by pressing key :

## Self-tuning procedure with heating and cooling processes:

(3-point / split-range controller)
Self-tuning starts as with a "heating" process. After self-tuning end, the controller settings based on the calculated parameters are made. This is followed by line-out at the pre-defined, until FiF is reached again.

Subsequently, a step to cooling is made to determine the "cooling" parameters. When cancelling the cooling attempt, the parameters for "heating" are also taken over for cooling. No error message (Hed.E_Err${ }^{-}$) is output.


The self-tuning statuses are indicated with priority in the display field for manual operation.

- Self-tuning running, display: ORun
- Self-tuning faulty, display:

OErr
Self-tuning completed with an error is finished by pressing key 융 twice.

## Self-tuning cancelation

Self-tuning can be stopped at any time by pressing key
운, or by selecting Stop in the Stat field (status).

Fig.30: Controller page with started self tuning


## Signification of self-tuning messages DRes $1 / \mathrm{DR}$ e 2 for controller type CONTR and CONTR +

| ORes1/2 | Sionification or trouble cause | Possible solution |
| :---: | :---: | :---: |
| 0 | No attempt was made or attempt cancelled by St.at: S. S.op or switchover to manual mode (윰 key). |  |
| 1 | Cancellation: <br> Faulty correcting variable output action, $X$ does not change in the direction of $W$. | Change controller output action. |
| 2 | Finished: self-tuning was completed successfully (reversal point found, safe estimation) |  |
| 3 | Cancellation: <br> The process does not respond or responds too slowly (change of $\Delta \mathrm{X}$ smaller than $1 \%$ in 1 hour) | Close control loop. |
| 4 | Completed, withou6 $\mathrm{Fi} \mathrm{GEEr} \mathrm{F}^{-}$: <br> Successful attempt, process has a low reversal point | Optimum result with low reversal point |
|  | Cancellation, with Ad.EErrr: <br> Attempt failed, process stimulation low (Reversal point found, but estimatio $n$ is unsafe | Increase output step change dYopt. |
| 5 | Cancellation: <br> Self-tuning cancelled because of exceeded hazard. | Increase separation of process value $(X)$ and (W) when starting, or decrease YOFtM. |
| 6 | Completed: attempt successful, but self-tuning cancelled due to exceeded hazard. (Reversal point not reached so far; safe estimation). |  |
| 7 | Cancellation: <br> Output step change too small, $\Delta Y<5 \%$. | Increase Ym. X or set Yort.m to a smaller value. |
| 8 | Cancellation: <br> reserve too small, or exceeded whilst PiR monitoring is busy. | Vary stable correcting variable YOF.m. |

The controller type PIDMA offers the following self-tuning page.
Fig. 31 Optimization page


For self-tuning preparation, parameters must be adjusted dependent on process and engineering. For this purpose, spe cial knowledge of the applicable function block is required, i.e. it should be done by the programming engineer. Self-tu ning start is as described above.

## Signification of self-tuning messages DRes for PIDMA

| ORes | Signification or error cause | Possible solution |
| :---: | :---: | :---: |
| 0 | No attempt was made |  |
| 1 | Xlimit too small | Step change threshold too small: compared to the process noise, the step change threshold is too small. Start a new attempt with a higher positioning pulse. |
| 2 | dYopt large | Positioning pulse too high: the correcting variable would exceed the positioning limits when the selected pulse height is output. Start a new attempt with smaller positioning pulse or reduce the correcting variable in manual mode previously. |
| 3 | Start again | No rest. The autotuner has detected that the process is probably not at rest. Please wait, until reaching the rest condition. Another possibility is to activate the drift compensation or to increase the positioning pulse. Note: With pulse width modulated (PWM) control outputs (2 and 3-point controller), oscillations of process value PV are susceptible to occur even during manual mode, if the corresponding cycle time t 1 (t2) is too long. In this case, the controller cycle times should be as low as possible. |
| 4 | dYopt small | Positioning pulse too small: the step response is hidden by process noise. Start a new attempt with a higher positioning pulse, or take measures to reduce the noise (e.g. filter). |
| 5 | No peak | Max. detection failed: after output of the positioning pulse, no maximum / minimum in the process value curve was detected. The settings for the process type ( with / without compensation) should be checked |
| 6 | Output sat | Positioning limits during self-tuning were exceeded. During the attempt, correcting variable MV has exceeded the positioning limits. Repeat the attempt using a smaller positioning pulse or a reduced correcting variable during manual mode. |
| 7 | Controller type | No self-tuning result for the specified combination P///D can be found. |
| 8 | Monotony | Process not monotonous: the process has a strong all-pass behaviour ( temporarily, the process value runs in opposite direction ) or serious trouble during the attempt. |
| 9 | Extrapolation | Extrapolation failed: after the positioning pulse end, no process value decrease was detected because of excessive noise. Increase the positioning pulse or attenuate the noise. |
| 10 | Bad result | Result useless: excessive noise, or the determined process parameters do not correspond to the description of a process with dead band. Start a new attempt with a higher positioning pulse or attenuate the noise. |
| 11 | Man. break | The self-tuning attempt was canceled manually by the operator with „STOP" |
| 12 | Direction | Faulty output action: the expected output action of the step response is opposed to the correcting variable. <br> Cause can be faulty setting of the output action, or e.g. inverting actuators. Change the controller output action. |

## I-10.7 Cascade controller

With cascade control, two coupled controllers act on a common actuator. A process value for the master and a process value for the slave controller are required.


The slave is determined via the external by the master. Cascade operation is possible in the following statuses:

## Automatic mode

In a cascade, master and slave operate automatically during automatic mode. The master and process value are the relevant variables for process control. The master is adjustable. The process value of the slave (9) is displayed additionally.
"Cascade" is displayed.
(1) Operating page title

Fig. 32 Operating page of a cascade controller in automatic
(2) Parameter set selection, if available
(3) Switchover field cascade mode (open/closed)
(4) source of master $\left(W_{\text {int }}, W_{\text {ext }}, W_{2}\right)$
(5) Display field for manual mode (otherwise empty)
(6) Physical unit (master block parameter)
(7) Entry into self-tuning
(8) Master process value
(9) Slave process value
(10) (from master in automatic mode, from slave with open cascade)

(11) Bargraph and display (Y from slave or X/XW from master)
(12) Display of slave selection with open cascade (otherwise empty)

## Cascade opened

For opening the cascade and control by means of the slave controller (see note text "Slave" on the operating page), switchover field (3) is switched to "Casc- Open".
"Casc-open" is displayed.
The slave is displayed now.
Now, the slave controller becomes the variable used for process control and can be adjusted.

The process value of the master control loop is set by the cascade loop rather than being controlled. Switchover between operation by master or slave is always possible.

In cascade mode, the master information is displayed in the fields for, source, physical unit

Fig. 33 Cascade controller with open cascade
 and X/XW bargraph. With open cascade (display "Slave"), the slave information is displayed.

## Manual mode

Switchover to manual is via key 图 (display in field(5). The cascade status (open/closed) is not affected. In manual mode the process is controlled directly with the slave correcting variable. The slave correcting variable can be adjusted during manual operation.
"Man" is displayed.

## Cascade optimization

In a cascade, the slave controller and then the master must be optimized.

The self-tuning entry of the cascade operating page - relates always to the slave!

For optimizing the master controller, the master must be selected purposefully via the operating menu. For this, the project description must be used.

Fig. 34 Cascade controller in manual mode


## I-11 Maintenance, test, trouble shooting

## I-11.1 Cleaning

Housing and front panel can be cleaned using a dry, lint-free cloth. No use of solvents or cleansing agents!
Avoid using solvents or cleansing agents!
I-11.2 Behaviour in case of trouble
The unit needs no maintenance. In case of trouble, check:

- Is the unit in on-line mode?
- Is the supply voltage connected correctly? Are voltage and frequency within the tolerances?
- Were all connections made correctly?
- Do the sensors and actuators work properly?
- Is the engineering OK?
- Is the unit configured for the required operating principle?
- Do the adjusted parameters have the required effect?
- Are the I/O extension modules plugged in and clicked in position correctly (modular option C)?
- Is a terminating resistor activated (can be required dependent on the instrument position in the bus topology with CANopen and PROFIBUS DP)?
- Were the required EMC measures carried out (screened cables, earthings, protective circuits, etc.)?
- Does the diagnostic page of the test engineering indicate an error?

If the unit does not function correctly after these checks, it must be shut down and replaced. A defective unit can be returned to the supplier for repair.

## I-11.3 Shut-down

Disconnect the supply voltage completely and protect the unit against accidental operation. As the instru ment is mostly connected with other facilities in the control loop, consider the effects before switching off and take measures to prevent the occurrence of undesired operating conditions!

## I-11.4 Test engineering as basic equipment

KS98-1 is factory set for a test engineering IO-test.edg, which ensures checking of the possible inputs and outputs of the extended basic unit (standard + option B + option C). If KS98-1 is provided with a customer-specific engineering, the relevant description is applicable.

If KS98-1 is provided with customer-specific engineering, the engineering description is applicable.
A diagnostic page is provided to indicate system errors in case of start-up problems. The availability of the real-time clock is also displayed. The display colour can be changed green/red and normal/inverse.

Fig. 35 Menustructure of the test-engineering


## I-11.5 //0-Test

Input and output type and measuring/signal range are configurable.
For this, switch the unit to OFFLINE( $\rightarrow$ page 35) first after starting up. All inputs and outputs are preset to $0 . .20 \mathrm{~mA}$ and $0-100 \%$ value range.
Before commissioning, the inputs and outputs to be connected must be configured for the required sensor type via main menu "Configuration".

After adjusting the correct type, the unit must be switched back to ONLINE!
Now, KS98-1 is ready for the first input/output test.
Possible settings:

- AINP1: thermocouple types; Pt100; 2*Pt100; 0/4 .. 20mA; 0/2 .. 10V; transducer 500 $\Omega$; resistance $500 \Omega 250 \Omega$
- AINP3 (option C): 0/4 .. 20mA
- AINP4 (option C): 0/4 .. 20mA
- AINP5 : 0/4 .. 20 mA
- AINP6 :0/4..20mA
- OUT1 : 0/4 .. 20mA or relay
- OUT2 : 0/4 .. 20 mA or relay
- OUT3 (option C) : 0/4 .. 20mA
- OUT4 : relay
- OUT5 : relay

Dependent on instrument selection, outputs OUT1 and OUT2 can be relay or current output. Accordingly, they must be controlled digitally or analoguely in the engineering.

As all outputs were defined as analog outputs in the present engineering, a value below $50 \%$ (corresponds to logic " 0 ") and a value above $50 \%$ (corresponds to logic " 1 ") must be set for relay output testing.
Outputs OUT4 and OUT5 are always relays, i.e. they are controlled digitally on the relevant operating page. (Adjusting values $\rightarrow$ Navigation page 32).

Adjusting the output values and selecting the pages are done as described. Continuation pages are selected using keys $\triangle \boldsymbol{\nabla}$ via the menu lines $(\boldsymbol{\Delta}, \boldsymbol{\nabla})$ and called up with $\square$.

This engineering is not suitable for controlling a plant. For this purpose, a customer-specific engineering is required (see versions, section: Adjustment on page 18).

Faulty settings can cause damage to instrument and plant!

## II Engineering-Tool <br> II-1 Survey

The engineering tool for KS 98-1 enables the user to make an engineering which is specially tailored for his applicati on. The engineering tool mainly comprises a function block editor supported by the IEC 1131-3 standards.
The engineering tool offers the following functions:

- By selection from a menu, functions can be selected and placed in the working window.
- Outputs and inputs can be connected graphically.
- When shifting functions, the connections are dragged.
- Function configuration and parameter setting.
- Downloading of the engineering into KS 98-1.
- Adjustment management.
- Long-term storage of various engineerings on hard disk or floppy.

Coupling the PC with the KS 98-1 multifunction unit is done via an RS232/TTL adaptor cable, which can be ordered se parately ( order number : 940799800001 ).

## II-1.1 Scope of delivery

The engineering tool scope of delivery comprises the following components:

- One CD-ROM for English, French, and German version.
- the operating instructions
- licence conditions
- registration with licence number


## II-2 Installation

## II-2.1 Hardware and software prerequisites

For using the engineering tool, the following system prerequistes must be met:

- min. 486 IBM-compatible PC,
- at least 8 MB working memory
- VGA card and suitable monitor (min. screen resolution 800 * 600 pixels)
- hard disk with min. 2,5 MB free memory
- Diskette drive / CD drive (CD-ROM can be copied onto diskettes)
- MS-Windows from version 3.1 (tested: Windows 3.1, Windows for Workgroups 3.11 and Windows 95)
- a free serial interface (COM1 - COM4)
- mouse required, adjustment as a double-key mouse in standard mode for right-handed operators


## II-2.2 Software installation

## Installation from CD

Place the $C D$ into the $C D$ drive and select the relevant path to install the required software. The $C D$ drive is assumed to be drive " $D$ " in the example below.

To install ET 98: D: linstall\ET98\cd\Setup.exe
To install ET 98plus: D:linstall\ET98pluslcdlSetup.exe
To update ET 98: D: linstallIET98plus.UPD\cd\Setup.exe
To upgrade ET 98plus: D:linstallIET98plus.UPG\cd\Setup.exe

## Installation from diskette

Generating the installation diskettes.
The software is supplied on a CD-ROM. Installation diskettes can be generated simply by copying the corresponding folders from the CD to diskettes.
The $C D$ drive is assumed to be drive " $D$ " in the example below.
Generating ET 98 diskettes:
Copy the complete contents of D:\install\ET98\disk1 to ...\disk4 onto four diskettes.
Generating ET 98plus diskettes:
Copy the complete contents of D:linstall\ET98plus\disk1 to ...ldisk6 onto six diskettes.
Generating an ET 98 update diskette:
Copy the complete contents of D:linstall\ET98plus.UPDldisk1 onto a diskette.
Generating ET 98plus upgrade diskettes:
Copy the complete contents of D:linstall\ET98plus.UPG\disk1 to ... \disk6 onto six diskettes.
Installation: Place the first diskette into the drive. Click on "Start" (or open Program Manager) and select "Execute..." (open "File"). Enter "A:SETUP" (or "B:SETUP" if your diskette drive is "B:"), and follow the instructions on the screen. Depending on the language you are working with, not all diskettes might be needed.

## II-2.3 Licencing

During initial installation of the engineering tool, an input mask ( $\rightarrow$ Fig.:36 ) for entry of the licence number is displayed. Unless a licence number is entered, the engineering tool starts only as a demonstration version with limited functions (saving and downloading of an engineering into KS 98-1 is not possible in the demonstration version). The licence number is given on the enclosed registration form. Please, keep the registration form carefully. You need the licence number in case of re-installation and when you have to make use of the technical support. Please, complete the registration sheet immediately and send it to the specified address via fax or as a copy via mail. In return, you will get technical support and regular information on product updates.

Fig.: 36


Fig.: 37

## Help

Contents U sing Help
Please, note the PMA licence conditions for software products. Successful installations are only possible onto a hard disk, but not on a network drive (only on request).

## Updates

The licence number is stored in the system and need not be re-entered in case of an update.

## Changing the licence number

A change of the licence number or licensing of a demonstration version (conversion into a full version) can be done via the menu bar $(\rightarrow$ Fig.:37 )"Lizenz". In the window ( $\rightarrow$ Fig.:38 ) displayed after clicking on Licence, input mask 'PMA licensing' ( $\rightarrow$ Fig.:36) can be called up via Edit. Now, the new licence number can be entered in this input mask.

Fig.: 38

| PMA Licensing - Info |  |
| :--- | :--- |
| Licence number: | 1163-5618-1827 |
| Product code: | $007:$ ET/KS98plus |
| Serial number: | 00031 |
| Licence type: | Internal PMA version |
| Expiry date: | --- |

## II-2.4 Software start

Starting software "engineering tool KS 98-1" is by double-clicking on the icon created by the installation program in program group "PMA Tools".

## II-3 Menu reference to the engineering tool

## II-3.1 Menu 'File'

This menu item permits standard data handling functions which are also known from other Windows programs $(\rightarrow$ see Fig.: 39). Via this menu, e.g. finishing the program is possible.

Fig.: 39


## New

Select command "New..." in the file menu, if you want to open an empty engineering without title. Working width / height and scroll bars are set to standard values. The existing engineering is removed from the working memory.

## Open

This function can be used for reading in already created engineerings. After selection of this command, a standard dialogue box ( $\rightarrow$ Fig.: 40) in which the relevant drive as well as the required path and file name are selected is displayed.
Via drop-down list "File format", adjustment which kinds of files are displayed in the file list is possible.
After confirmation with OK, the file is loaded.

Fig.: 40


This command can be used for loading a stored engineering for editing. If write-protected is selected, a new name is always required when saving (Save as).

## Save

This function can be used for saving an engineering created by you as a file. Storage is with the file name used when reading in. If no name exists (new Engineering), select the required path, enter a valid name (with omission of the file extenstion, standard extension .EDG is used automatically) and acknowledge with OK. If there is already a file with the same name, a message is displayed. When saving this file repeatedly during an operation, re-selection of this menu item is sufficient, whereby the name need not be entered repeatedly.

## Save as

This function permits saving of an already loaded project under a different name. For this, enter a new name into the field provided for this purpose. If the file extension is omitted, the file is saved automatically with extension .EDG.

## Project info

Execution of this command is followed by display of an input mask for specification of general information on the project. Date of modification and operating version are entered automatically.
The following parts of the project info are stored in KS 98-1:
the first line 'Project name' (max. 45 characters can be edited freely) the modification data and the operating version
Fig. 41


After clicking on button Frame header a window for text entry for the drawing header is opened ( $\rightarrow$ Fig.:42).
Fig.: 42


For print-out with drawing header, tick box 'Use frame' ( $\rightarrow$ see (i) Fig.:42).
Fig.: 43 Frame header

| c | Text 11 | Text 14 | Text 17 | Datum: | Text 20 | PMA <br> Prozeß- und MaschinenAutomation $\mathbf{G m b H}$ Miramstraße 87 34123 Kassel | Ben | Text 3 Text 4 |  | $=$ | Text 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| b | Text 12 | Text 15 | Text 18 | Bearb: | Text 21 |  | Text 1 |  |  | + | Text 8 |
| a | Text 13 | Text 16 | Text 19 | Gepr: | Text 22 |  | Text 2 |  |  | Z-Nr.: | Text 9 |
|  | Anderung | Datum | Name | Norm: | Text 23 |  | Text 2 |  | Text 6 | B//Sh: |  |

(Modifying the frame header; see also the section "Print $\rightarrow$ Graphic print-out with frame header")

## Project PC $\leftarrow$ KS 98-1

After calling up this menu item, an additional selection (see Fig. 44) is displayed.

## Engineering

Fig.: 44


Complete engineering read-in.

## Para/Config

Configuration and parameter data read-in. To ensure correct data read-in, the engineering in the instrument and in the engineering tool must be equal.

## Function block

Configuration and parameter data read-in of a function block marked in the engineering.
With password protection of an engineering, dialog box "Log in" (see Fig.: 45) is displayed. This dialog box asks you to enter the password for the existing engineering.

Fig.: 45
Exceeding the "number of permitted faulty attempts" (see Fig.: 51)
deletes the engineering in the multi-function unit


## Project PC $\rightarrow$ KS 98-1

Function block
Transmission of configuration and parameter data of a function block marked in the engineering.

Fig.: 46


After calling up this menu item, an additional selection is displayed
$(\rightarrow$ Fig.: 46).
Fig.: 47

## Engineering

After selecting this menu item, a dialogue box is displayed $(\rightarrow$ Fig.:32 ).

When clicking on the OK button, the actual engineering is transmitted into KS 98-1 without password protection.


The project stored in the instrument so far is overwritten. The possible messages are shown below.

Fig.: 48



Fig.: 50


When clicking on button "new password" in the dialogue box, the password dialogue is opened (see Fig.: 51).
Enter password, password mode and number of permitted faulty attempts.

When clicking on button OK, the current engineering is transmitted into KS 98-1 with password protection.
Thereby, the project stored in the unit so far is overwritten.

Fig.: 51


The message shown in Fig.:51 indicates an error in the transmitted data and is used for trouble shooting in case of technical questions.
The password mode determines the access privilege ( $\geq$ see following table) to the KS 98-1 data via the interface.

## Export

After calling this instruction, you must define whether the parameters and configuration data of the individual function

Fig.: 52

| Export... | WMMF |  |
| :--- | :--- | :--- |
| Drucken... | IXT |  |
| D:SPMATOOLS\ET98.32.(PRJ\EXAMPLE | ISCHALTUR.EDG | Variablenliste | blocks (text file $\rightarrow$ see Fig.: 52), the graphical engineering (graphics in .wmf format) or the variables list are to be exported.

## Print

After calling up this menu item, an additional selection is displayed ( $\rightarrow$ Fig.:53 ).

Fig.: 53

| Frint | Grarhics |
| :---: | :--- |
| D:\PMATOOLSXET98CANLET_12.EDG | Text |
| D:\PMATOOLS\ET98.32\PRJ\EXAMPLE | Connectina diagram |

## Graphics

Engineering print-out

## Text

Print-out of parameter and configuration data of individual function blocks (text output $\rightarrow$ see Fig.:54 )

Fig.: 54

## Connecting diagram

Print-out of the connecting diagram (see page55 for connecting diagram)
$==================================================$
Blocknummer:101 Funktion : Analoger Programmgeber
Abtastzeitscheibe=11
Short-Parameter =3
WMode $=0$
PMode $=1$
TPrio = 0

Subsequently, the standard mask for adjusting printer functions under Windows is displayed. The pos-

Float-Parameter =1
$\mathrm{Wp} 0=0.000000$
Short-Konfigurationen $=3$ PwrUp $=2$
PEnd $=0$
Turbo $=0$
Float-Konfigurationen $=0$
Text Parameter $=1$
Text 1= APROG
The data of the actual project are output in a standard form on the connected printer. The current standard printer ad justed under Windows with standard font is used for this purpose (MS Sans Serif 2,8mm).

## Print-out of a section

For printing parts of an engineering, the part to be printed must be marked in the survey mode. In the standard printer mask (see Fig.:55), click on "Mark" ("Mark" with Windows 95) before starting the print-out. This is only possible with graphic print-out. Printing out a section with drawing header is not possible.

## Graphic print-out with frame header

Graphic print-out is possible with or without frame header. As standard, printing is without frame header. Selection is in input mask 'Drawing header' $(\rightarrow$ p. 55 Fig.: 42)

Fig.: 55


In the drawing header, additional information such as operator, date, version no. etc. can be entered. On the left besi de the PMA logo, there is free space for a customer-specific logo. The PMA logo can be removed or replaced by a customer-specific logo.

The frame header is in .wmf format (in ....PMATools\Et98.xxx\Framexd.wmf) and can be edited with normal graphic programs(e.g. CorelDraw). However, fields and frames should not be changed to prevent faulty positioning of the texts entered in the engineering tool.

## Page grid in the engineering survey

An engineering can be printed out either completely on only one page, or as a marked section.
By mouse-clicking (left key) in any position of the engineering with ctrr key pressed, a page grid on which the engineering can be printed out is included into the survey ( $\rightarrow$ Fig.:56). The pages are numbered linewisely from left to right and from top to bottom in the print-out and can be printed out with or without frame header. Pagewise print-out is pre pared by ticking 'pages' in the standard printer mask (see Fig.:55) Pressing ctrr key + clicking with the mouse in the top corner of the survey removes the grid.
In the normal view, the page borders are shown as broken lines.
Fig.: 56 Setting up a page grid


Seite 3

## Seite 4



## C:SPMATOOLSLET98.20DVPRJxx.edg (last 4 projects)

The last 4 handled or stored projects are displayed. The project is loaded after clicking on it.

## Exit

This command finishes working with the engineering tool. Moreover, finishing the program via the system menu field is possible, as in every Windows-supported program. For this, select option "Exit" accordingly. Before finishing, you may be asked, if you want to save the changes in the project handled last. If you deny, the changes are canceled, ot herwise, they are stored. Select "Cancel", or press key "ESC" for exit from the dialogue box and returning to the current project.

## II-3.2 Menu 'Edit'

## Timing

This command calls up the timing dialogue in the normal view. This dialogue can be used for determination of the time slot assignment for each function block. Time slot assignment can be done also from the parameter dialogue $(\rightarrow$ Fig.: 59). In the survey, a handling simulation which indicates the order in which the function blocks are calculated is called up.
The timing dialogue shall indicate the time consumed by the function blocks in the time slots, as well as the handling sequence. Therefore, two different time slot selection functions are available. The timing sequence is displayed in the bottommost line, whilst the individual time slots are displayed at the top. If a scanning time of a time time slot is selected, all function blocks which are calculated in this time slot part are displayed in the left box. Thereby, the order corresponds to the timing sequence.

The right box contains all function blocks which are not allocated to a time slot so far.
If a function block is selected, it can be shifted into this time slot by mouse clicking on the relevant field. Clicking outside a time slot will remove it from a time group without re-allocating it.

Fig.: 57


If several function blocks are to be moved simultaneously, they can be selected by means of or with the left mouse key. As default, the engineering tool assigns the newly placed function blocks to the time slot with 100 ms scanning time. The total of calculation times of all function blocks per time slot must not exceed $100 \%$.

A calculation time of a time slot exceeding $100 \%$ is displayed by a colour change (red) in the timing dialogue (see Fig.:58).

Fig.: 58

In this case, the function block repartition must be changed.
The survey display shows a simulation that indicates in which sequence the function blocks are calculated. The sequence is either shown automatically, or is defined individually by the user via the keys v (= forwards) and r (= backwards).


## Parameters

This command can be used for calling up the parameter dialogue of a selected function ( $\rightarrow$ Fig.: 59). Its function is equivalent to clicking with the right mouse key with the function marked. In the parameter dialogue, the parameter and configuration data of the function blocks are adjusted. With parameter or configuration data with which the required setting can be selected from a text group, an additional dialogue in which the possible settings are offered via a drop-down item is called up (1) at the moment at which the text is changed. A help text concerning the relevant parameter is displayed in a frame (3) .
Moreover, the block number and the time group allocation (scanning time code (2)) can be changed, if necessary. The block number determines the handling sequence within a time slot. The block number can be

Fig.: 59
 changed into any value required for this function. Normal calculating functions can be set to block numbers ranging within 100 and 450 . If the new block number is already used, all other functions are shifted upwards by one, until a free block number is reached. Unless a free block number can be found, allocation of block numbers is refused

## Delete

Deletes the marked function or connection (Del key)

## Wiring / Positioning

Toggles between the wiring and the placement mode. Switching over can be done also by double-clicking with the left mouse key.
In the wiring mode, connections can be created, changed and deleted.
The placement mode permits function placement, shifting and parameter setting.

## Standard connection

A connection which was changed manually can be re-calculated automatically via this command.

## Survey (Key 'a')

Display of the overall engineering or switch-over to normal view (wiring mode).When clicking in the survey with the right mouse key, the engineering tool changes to the clicked position in the normal view. An area marked in the survey can be printed out selectively (see page 58).

## Add text

If this instruction is called, a window is opened, in which a single-line text block with max. 78 characters can be entered (see Fig.: 60). This text serves as a brief explanation at any point in the engineering. The text can be moved and deleted like any other block.

Fig. 60


## Reorg Block No.

Subsequent deletion of functions produces "gaps" in the list of assigned block numbers. The menu item "Reorg Block No." opens a dialog box (see Fig.:61).
After confirmation with "OK", all the block numbers are renumbered consecutively. If the default value "0" of the parameter "Free block numbers" is changed (e.g. $=10$ ), all block numbers are increa-

Fig. 61
sed by the specified value, and free spaces are eliminated.


## Search

Selecting this menu item opens the
Fig.: 62 window "Search function" (see Fig.: 62).
It is possible to search for existing elements in the different groups.
All possible items are displayed in a list box, where they can be selected. If the search is successful, the corresponding part of the engineering is displayed, whereby the identified element appears inverse. Fig.:62 shows examples of block names.


## Enlarge sheet

With a very extensive engineering, increasing the window greater may be necessary.

## Move

Shifts the overall engineering horizontally and vertically.
The $x$ value shifts in horizontal and the $y$ value shifts in vertical direction. Negative values shift left or up. A value of 100 shifts by approx. the size of a small function block.

## Add

This command can be used for adding saved engineerings, inclusive of all adjusted parameters, to the one loaded instantaneously. Unless further block number ranges for defined functions are free in the current engineering, an error message
$(\rightarrow$ see Fig.:63 ) is displayed.
Recurrent individual parts can be composed quickly into new engineerings by saving them (e.g. programmer, controllers with particular parameter settings, etc.)

## Undo (Ctrl + Z

This command can be used for canceling the last action.

## II-3.3 Menu 'Functions'

Menu 'Funktionen' permits selection of all KS 98-1 software functions with variable block number. After clicking on 'Functions', a list of the functions classified in groups is displayed. When clicking on a function group (e.g. scaling and computing 2) the software functions belonging to this group are displayed as block diagrams
$(\rightarrow$ Fig.:64). Click on a block diagram to select this function. The selected function is displayed in the bottom left status field and remains selected, until it is replaced by another function.
Selection of a function existing in the engineering selects this function for positioning.
Clicking with the right mouse key places the selected function in the mouse pointer position.
Further functions can be selected under menu 'Fixed funct.'.
Depending on the selected operating version, the displayed functions can vary.

Fig.: 64


## II-3.4 Menu 'Fixed funct.'

Menu 'Fixed functions' permits selection of all KS 98-1 software function with fixed block number. After clicking on 'Fixed functions', a list of the functions classified in groups is displayed. When clicking on a function group (e.g. Digital I/O) the software functions belonging to this group are displayed as block diagrams $(\rightarrow$ Fig.: 65). This function is selected by clicking on a block diagram. The selected function is displayed in the bottom left status field and remains selected, until it is replaced by another function.
Clicking with the right mouse key places the selected function in the mouse pointer position.
Fixed functions can always be selected only once. These functions are e.g. for inputs or outputs, or status functions. All these functions are sorted automatically in the block number range below 100 .

Fig.: 65


## II-3.5 Menu 'Device'

## Device selection

This command is used for selecting the KS 98-1 industrial controller version.
The mask displayed after execution of the command is displayed in Fig.:66.

Selection of the instrument version is possible via the drop-down items.

The order number resulting from the version selection is displayed on the bottom left. The inverse procedure (entry of order number $\geq$ display of instrument version) is also possible.

For storage of the selected setting, the selection must be validated by clicking on "OK".

Clicking on button "Cancel" will cancel the current selection.

Fig.: 66


## Instrument parameters

In the input mask ( $\rightarrow$ see Fig.: 67) the settings of KS 98-1 instrument data, address, Baudrate, mains frequency and language are entered. These data are transmitted to KS 98-1, provided that the instrument version is correct.

## Freezing the outputs for download

With this field enabled, the engineering is prepared in such a way that during the next download to the multi-function unit, the outputs are frozen in their present status. With the field disabled, the outputs are switched off during this time.
This means that the selected function only becomes effective after the next download.

Fig.: 67


## CANparameter

The menu item "CANparameter" can only be selected, if "KS 98-1, CAN I/O extension" has been enabled during device selection (see Fig.:68).
The window "CANparameter" (see Fig.: 69 ) is used to define whether the device is a CAN_NMT (Master) or a CAN_SLAVE. Make sure that the CAN_Baudrate has been adjusted to the same transmission speed in the entire CAN network.

Various speeds between 10 kbytes and 1000 kbytes are selectable (default value is 20 kbytes).

Fig.: 68
Selectira device
Basic unit
KS 98-1, CAH I/0-Extension
KS 98-1, CAN I/0-Extens
KS 98-1
KS 98-1, with transm.
KS 98-1, CAH I/0-Extension

Fig.: 69


## Communication between KS 98-1 and RM $\mathbf{2 0 0}$ modules, KS $\mathbf{8 0 0}$ or KS $\mathbf{8 1 6}$

KS 98-1 communicating with RM 200 modules, KS 800 or KS 816, must be defined as master. In this case, the CAN node ID " 1 " is automatically assigned to the CAN_NMT (master).

## Cross-communication with other KS 98-1 multifunction units

For the cross-communication between several KS 98-1, it is necessary to configure one KS 98-1 as the master, and the other units as slaves. In this case, the CAN node ID " 1 " is automatically assigned to the CAN_NMT (master). The addresses 2... 24 can then be assigned to the CAN_SLAVEs.

## Password (F2)

The password can be adjusted and changed via this menu item. Password entry during transmission is possible addi tionally.

## II-3.6 Menu 'Options'

## Communication

This menu item can be used for selecting the interface via which the interface cable is connected to the PC for commu nication with Industrial Controller KS 98-1. Baud rate and device address are also adjustable. The other communication parameters are fixed and displayed only for information ( $\rightarrow$ see Fig.: 70). The function "Transmit address and bit rate" refers to the communication parameters defined in the window "Device parameters" (see Fig.: 66 ).
For storage of the selected setting, the selection must be acknowledged by clicking on "OK". Clicking on button "Cancel" will cancel the current selection.

Fig. 70

| Optionen Fenster Hilfe |  |
| :---: | :---: |
| Kommunikation |  |
| Grundeinstellung |  |
| Sprache |  |
| Vergleich | F3 |
| Debug | F4 |
| Anzeigefunktionen loschen |  |
| IREND |  |
| Status "pwrchk" setzen |  |

Fig.: 71


## Basic setting

Two display modes are possible. The hatched mode is recommended for print-out on black-and-white printers or displays (e.g. laptop). In all other cases, the colour setting should be used.

Fig.: 73


## Language

The engineering tool language can be selected.


## Comparison (F3)

Permits comparison of the active engineering with the contents of the connected KS 98-1 or of the simulation. The operation is started immediately after clicking on this item. The comparison result is displayed in a message window. Possible messages are shown in Fig.: 74 to Fig.: 76. (close window with key "x").

Fig.: 74


Fig.: 76


Fig.: 75


## Debug (F4)

Activates cyclic display of signals in the additionally created monitor blocks (see also chapter 3.5).

## Deleting display functions

As display functions are not transmitted to KS 98-1, deleting all these functions at the end of the debug phase may make sense.

## Trend

See description of 'Universal trend function' (chapter 3.6 from page 72 )

## Set status "pwrchk"

The STATUS function provides a digital output "pwrchk" (power fail check), which goes to "0" when the power returns after a failure.
By means of the function "Set status pwrchk" this output can be reset to " 1 ", thus enabling a functional test of the en gineering to be triggered after a power failure.

## II-3.7 Menu 'Window'

## Error

## Fenster Hilfe

The menu item "Error" enables an error message window to be displayed or hidden, if errors occur during loading or when switching to another operating version.
Menu 'Window' permits selection of an error window, or returning to the background, if an error occurred during loa ding or operating version switch-over.

## Connecting diagram

Depending on the selected hardware version and the wired inputs/outputs, a connecting diagram is generated interac tively, which also contains the assigned block names.

## II-3.8 Menu 'Help'

The engineering tool is delivered with an on-line help which is available at any time. How to handle the Windows help system is described in detail in the documentation of the Windows operating system.

| Hilife |
| :--- |
| Inhalt |
| Hilfe benutzen |
| Statistik |
| Lizenz |
| Info |

## Engineering INFO

After execution of this command, the following window with general engineering information is displayed ( $\rightarrow$ see Fig.:77).

Fig.: 77 Engineering data
(i) version_a: 3.0.204 13.11.1998 $\mathrm{BV}=3$

Functions $=50$, Connections $=108$, Real-param $=212$, Int-param $=231$, Text-param $=156$ Memory $=29.1 \%$


## Licence

Information on your entered licence number required with questions you may have is displayed in this information window. A new licence number can be entered via button Change...
$(\rightarrow$ page 53$)$.

## Info

When selecting command Info in menu Help, an information window containing the version number and a general information on the engineering tool is displayed. You should be able to specify this version number, whenever you should have any questions.

## II-4 Engineering tool operation

## II-4.1 Fundamentals of the engineering tool operation

For operation of the engineering tool, basic knowledge of the Windows operating system is an advantage. Unless you have this knowledge, please, make familiar with Windows first before executing the program for the first time. This is possible using the Windows manual, the Windows on-line help and the Windows learning program.
$\square$ For all questions in connection with the engineering tool, the KS 98-1 ONLINE HELP (key F1) is available ( $\rightarrow$ Menu Help).
Press the F1 key with the function marked or with the parameter dialogue opened to start the on-line operating instructions (only possible with the Acrobat reader on the computer installed)

## Before making changes to the engineering, the engineering must be stored, since changes cannot be can celed automatically!

The two operating modes are distinguished by the mouse pointer display (hand symbol / arrow symbol). These two mo des are described in the following sections. Switch-over is by double-click with the left mouse key or via 'Menu' $\rightarrow$ 'Edit' $\rightarrow$ 'Positioning'/'Wiring'.

## II-4.2 Function block placement

A function can be selected either via menu bar 'Functions' or 'Fixed functions', or by Fig.: 78 entry of the function name in capital letters. With the engineering tool in the placement mode (mouse pointer is a hand symbol), the name of the instantaneously selected function is displayed in the bottommost status line.
By clicking with the right mouse key, the selected function is placed in the actual
mouse pointer position.


## II-4.3 Function block shifting

After clicking with the mouse pointer on a function block, the mouse pointer is displayed inversely ( $\rightarrow$ see Fig.:78) and
 can now be shifted either by means of the cursor keys or using the mouse (keep left mouse key pressed). The linked connection lines are dragged. Clicking with the right mouse key with inverse display of the function block opens the parameter dialogue of this function ( $\rightarrow$ see also page 61). Shifting several function blocks simultaneously is possible only in the survey display ('Edit' $\rightarrow$ 'Survey' or by pressing key 'a').

## Procedure:

Calling up the survey (key 'a').
Use the mouse pointer to draw a window across the function blocks which are to be shifted.
Use the cursor keys or left mouse key to shift the selected area.
Only the function blocks which are fully covered by the marking will be shifted.

Fig.: 79


## II-4.4 Greating connections



Connections can be created only between analog outputs and inputs or digital outputs and inputs. Connecting digital outputs and analog inputs and vice versa is not possible!
Procedure:
Click on the end point of the output arrow with the left mouse key.
With the mouse key kept pressed, draw the connection to the arrow start of the required input.
Release the mouse key.

Fig.: 80

false

Fig.: 81

correct

An output can be connected with several inputs. However, connecting an input with several outputs is not possible. The connection is displaced according to a standard algorithm.

## Connecting additional inputs

If a connection was selected, an additional input can be connected directly by clicking with the left mouse key with key CTRL (Strg) pressed. Select a defined segment of a connection to determine at whied segment the new connection is made (see Fig: 82/ 86 and $87 / 83$ ).

Fig.: 82


Fig.: 86


Fig.: 87


Fig.: 83


## Handling connections

For increasing the graphic display clarity, subsequent handling of the connection lines is possible. The left mouse key can be used to select a line in the wiring mode (arrow symbol). The selected line is now displayed in a different colour and thickness. If this line belongs to a network (an output is connected with several inputs), the relevant lines are dis played in the colour of the selected line, but in normal thickness. Now, the individual segments of the selected line can be shifted by positioning the mouse pointer on a segment and with the left mouse key kept pressed. The segments can also be displaced using the cursor keys.
If further line segments are required, the last segment can be prolonged and displaced as a new segment ( $\rightarrow$ see Fig.: 85 and 84). In this way, max. seven variable segments can be created.

Function 'Standard connection' can be used for returning the selected line into its standard form (Function key F11).

Fig.: 84


Fig.: 85


## Changing signal source connections

In order to prevent the necessity to delete all connections and to remake them manually to the new source when chan ging the network wiring for another signal source, connecting a complete network to another source is possible. This is done automatically by clicking on the signal source (output) and simply clicking on the new source with key Ctrl (Strg) pressed. Thereby, all inputs are connected to the new source automatically.

## Overlapping lines

Extensive engineerings frequently feature overlapping lines which do not belong to a network.
Function key F5 can be pressed for searching the engineering for overlapping lines. The first line which is found will be marked.
Pressing function key F6 will search in the engineering and count how many overlappings are found. The line found last will be marked.
To ensure the clarity of the engineering, these lines shall be shifted apart, until line marking after pressing keys F5 or F6 stops.

With networks, concentration of lines running in parallel is desirable. For this, seize a line at the segment which is passed by all lines to be concentrated, and move the marked segment across all network lines ( $\rightarrow$ see Fig.:89) with the Ssniff key or the switch-over key pressed. Segment shifting can be done also using the cursor keys. Concentration of the segments belonging to a network is also caused by pressing key F7. Note, however, that the catching area is limited with this function!

Fig.: 88


Fig.: 89


## Variable editor and virtual links

Via menu item 'Fixed functions' 'ET functions' $\rightarrow$ p. 63) data sources and destinations (analog and digital) can be selected and inserted into the engineering as special block ( $\rightarrow$ Fig.: 90). These sources can be assigned to variable names as with all other functions in the parameter dialogue. In the parameter dialogue of data destinations, the already defined variables are displayed in a listbox from which the required variable can be selected and assigned. These 'virtual' links are interpreted as 'full' lines in KS 98-1. Thus e.g. auxiliary functions can be placed at the periphery of the engineering without the need to draw confusing lines through the whole engineering, whereby clarity and readability are improved considerably.
However, these special blocks and their variable names are not stored in KS 98-1 and cannot be reconstructed when reading out directly from a KS 98-1. They are rather shown as full lines.
Fig.: 90


## II-4.5 Online operation

## Display blocks (analog and digital)

In 'Fixed functions' $\rightarrow$ 'ET functions' ( $\rightarrow$ Fig.: 91) display blocks (X-Disp and d-Disp) can be selected and inserted into the engineering as special block ( $\rightarrow$ Fig.: 92).

Fig.: 91


Like all other functions, these blocks can be given names in the parameter dialogue. Via 'Options' $\rightarrow$ 'Delete display functions', all display blocks can be deleted simultaneously e.g. after finishing the engineering test.
Fig.: 92


## Debug

The debug mode can be enabled/disabled either via the menu item "Options $\rightarrow$ Debug" or directly with F4. Operating data are then exchanged cyclically (approx. 0,5s) with the KS 98-1 or SIM/KS 98-1. The generated display blocks will show the relevant values. Too many display blocks will extend the cycle time.
Parameters can be changed online using the parameter dialog. After confirmation with "OK", they are transmitted to the KS 98-1. The results are displayed immediately.

Parameter changes via the KS 98-1 front panel are not transmitted to the PC during the debug mode.

## II-4.6 Trend function

## Survey of the characteristics

Apart from the trend function specially designed for "Controllers" (CONTR, CONTR+) of the simulation package SIM/KS 98-1, additional trend windows can be implemented. Each trend is able to display 7 analog values and 12 logic states from the Engineering against a time axis. Several independent trend displays can be shown simultaneously.
As soon as the trend function(s) have been called (L1READ), and the Engineering has been transmitted to the KS 98-1 or SIM/KS 98-1, the trend dialog window is opened via the menu item <Options><TREND>.

- Trend dialog window

This window is used to select the required trend function, its duration, and the time interval. Clicking the START button initiates the trend recording function, and a display window is opened for the selected trend curve. In this way, it is possible to open several display windows.
Display window
Two different scales can be assigned to any pair of measurement values, which simplifies interpretation of the trend curves.
The length of the time axis is adjusted by means of "Sampling cycle time" and "Number of measurement values" (samples) for each trend display. The time axis is either "absolute" with date and time (hh:mm:ss) or "relative" (changeable during the recording).
The exact analog values are shown numerically at top left in the display window. If the cursor line is active, the analog values can be read precisely at any point of time. Trend display can be stopped (frozen) and resumed; the measurement continues in the background!
By holding down the left mouse key, the cursor can be used to mark an area for enlargement.
This zoom function is canceled via <View><Complete display>.
Fig.: 93 Trend display


## Preparations in the ET/KS 98

The trend function is an application that runs independently of the Engineering Tool. The values to be displayed are re ceived directly from the KS 98-1 or from the simulation software SIM/KS 98-1. Data trans-mission is executed via the communication modules L1READ (blocks 1...20), which must first be configured. For each L1READ, 7 analog values and 12 logic statuses from the Engineering can be "connected". Usually, a single L1READ is enough to display the charac teristic values of an application in relation to each other. However, up to 20 display windows can be provided. Please note that the com-munication load depends on the transmission cycle adjusted in each display window, and can cause problems. Make sure that the following limits are not exceeded:

| Übertragungszyklus | Anzahl Trendfenster |
| :---: | :---: |
| 1 s | $\leq 2$ |
| 2 s | $\leq 4$ |
| 4 s | $\leq 8$ |
| 8 s | $\leq 16$ |

Fig.: 94 Preparations in the KS 98-1 Engineering


## Implementing the trend function

When the preparations in the Engineering have been completed, and it has been transmitted to the KS 98-1 or SIM/KS 98-1, the trend dialog box is opened directly from the Engineering Tool ET/KS 98 by means of <Options><Trend>.

Fig.: 95 Implemented L1READ functions

| 01:Survey |  |
| :--- | :--- |
| 01:Survey |  |
| $02:$ Profile |  |
| 03:Auxilary |  |
| 04:Burner |  | 04:Burner

All the L1READ functions implemented in the Engineering, are displayed in a list box with their assigned "names", from where they can be selected for display.

The lower part of the trend dialog box shows all the signals connected to the selected L1READ function, complete with block number, block title, and connection description or variable name.

Fig.: 96 Trend dialog box (trend display not yet started)


Trend recording of the selected L1READ function can now be started directly with the "Start" button. The trend para meters can be changed previously by means of the "Change" button. The duration of the trend curve (visible time axis) is determined by the product of "Sampling time x sampling steps". Furthermore, you can define what happens after the selected recording duration has expired: Either the recording is terminated ("Stop at end") or continued ("Ring memory/moving"). With the second option, previous values are deleted!

Fig.: 97 Behaviour when recording time has expired

| Trend Set 1 |  |  |
| :---: | :---: | :---: |
|  |  | OK |
| Sampling time into Sampling steps Infinite |  | Cancel |
|  |  |  |
|  | ON |  |
|  | At END STOP |  |

## Displaying the trend curves

Clicking the "Start" button initiates the trend recording function and opens a display window. Values are displayed from left to right. Via the buttons in the dialog box, the trend display can be stopped (STOP) or moved into the bac kground (Invisible), whereby the display window is closed. The lower part of the dialog box now shows a numeric dis play of the actual values of the connected variables.

Note:

1. When using the simulation software SIM/KS 98-1, the "Turbo" mode should always be switched off.
2. Before starting the universal trend, the controller trend of the SIM/KS 98-1 simulation should be terminated!

Fig.: 98 Trend-dialogwindow (trend running)


Fig.: 99 Graph window


## Buttons in the display window

## Symbol Description



## Symbol Description

| II | Stop/continue trend recording |
| :---: | :---: |
| [19]5 | Enable/disable cursor line |
| 星 | Parameter dialog for trend adjustments |
| Q | Program information |

## Adapting the trend curves

The menu items <Extras><Options> in the display window enable you to adapt the trend curves ("Channel settings"). While the trend recording is running, the "Channel settings" window can also be opened from the trend dialog box via <0ptions><Dialog>. The "Channel settings" are stored together with the Engineering in the KS 98-1 or the SIM/KS 98-1. The following settings can be adapted:
Selection of the graphic curves ( x )
Description (title)
Curve colour
Value ranges (min / max)
Assignment of the left / right scales to variables
Time axis (absolute / relative)

Fig.: 100 Parameter adjustments of the trend curves


## Calling the trend function without ET-KS 98

The settings in the trend dialog box are saved via the menu items <File><Save as ...> in the file name.dat. This enables the trend dialog box to be opened by calling trend_di.exe, and the required trend recording to be started without the Engineering Tool.
However, a KS 98-1 or the Simulation SIM/KS 98-1 with the corresponding Engineering must be connected.
It is also possible to open a display window directly by opening the corresponding file name.dat, if a link with trend_di.exe is provided under Windows.

## Subsequent trend analysis

The contents of a display window can also be saved as a name.trd file, that can be opened later for analysis and evaluation. The cursor line, display options, and the zoom function are active.

## II-5 Building an engineering

## First steps with the KS98-1 engineering tool

In this chapter, we would like to help you getting started with a concise description:

1. Installing the required tool
2. Projecting/programming a small test project
3. Testing the required instrument behaviour in the simulation
4. Loading the project into KS 98-1
5. Testing the implemented functions
6. Hint to the function library and task-related structures
7. References to further detail information on tools and application

After automatic start via "Installation of PMA Tools", you will find engineering tool KS 98-1-Tools ET/KS98, Sim98-1 and instrument simulation SIM/KS 98-1 on the PMA CD.

Follow the instructions for installation and enter your licence number after being requested to do so (separate numbers for engineering tool and simulator). If you only want to test the KS 98-1 tools without obligation first, our personnel will give you temporary licence numbers for the two tools. Without the licence numbers, you will be able to test the two tools independently, however, without building up communication between instruments. In this case, transmission of a test engineering to the instrument or to the simulation is not possible. For communication with the real instru ment, only the engineering tool licence is required.
(1) Start the engineering tool and select the required language (German/English/French) via menu Options .
(2) Functions and fixed functions.

These menu items contain the function blocks for selection of Fig. 101 the relevant function descriptions in this manual.
(3) As a simple beginner's project, we want to build up a control loop. For this, we need a process value input (analog input 1) from the fixed functions and a positioning output for the controller correcting variable (analog output 1).
(4) We select the input block from the list by clicking with the left mouse key.
Now, position the block on the left of the working surface by clicking with the right mouse key.


For controlling, we also need a controller (in Functions - Controllers > CONTR).
(5) This controller should be positioned behind the input.
(6) The same we do with the OUT4 and place him below the controller.


In the next step, we have to soft-wire the function blocks, in order to provide a connection from the input via the controller to the output.
(7) For this purpose, we can select the wiring mode (via menu Edit - Wiring or by a simple double-click). The mouse pointer as an arrow is displayed.

We use it to draw a line from the tip of the AINP1 (red arrow right) output arrow to controller input arrow X1 by (means of the left key).
(8) Accordingly, we draw a connection from controller positioning output Yout1 of the controller block to the input arrow of output block OUT4.

All function blocks have still to be checked for correct parameter setting. AINP1 is set to $0-20 \mathrm{~mA}$ as default, which is OK to start with. OUT4 is relay to the first output. The controller default setting is " continuous control", we set it to 2-point in the field "CFUNC".
(9) For this purpose, we return to the soft-wiring mode ( hand pointer ) and click with the right mouse key on the function block for which we are setting the parameters. The individual parameter dialogue of the selected function block appears.
(10) Now the parameter is selected with a click into the text field. Its signification is displayed in concise form in the bottom field of the input mask.
When opening the input field by clicking twice, a listbox for selection is offered.
(11) When leaving the parameter dialogue with OK , the block setting is completed.

Fig. 104


The engineering for a simple control loop is also completed. Only the function test has still to be passed. For this, eit her a KS 98-1 or the simulation are required.

The instrument settings are dependent on whether a simulator or a real instrument are used for testing:

## Test with device

In the ETKS98 at $\rightarrow$ device-device selection the adjustment to the existing device is made.
Therefore the product-code-no. of the device (sideways on the typeplate) is written into the "order-number" field With OK the adjustment is confirmed.

For communication with the device a serial connection (COMport from the PC) with the device via pc-adapter is set up.

Check $\rightarrow$ Menu - Options - Communication in the ETKS98, if the interface is set to Com 1.

## Test with the Simulation

Start SIM-KS98-1. Select the version to be simulated at $\rightarrow$ Menu -Settings-Device.
In the ETKS98 at $\rightarrow$ device-device selection fill in the product-code-no of the simulation (written in the field order-no of the simulation). Confirmed with OK.
For communication with the simulation, in the engineering-tool the interface is set to SIM/KS98-1 via the Menu Op-tions-Communication.
After all this preparations we can load our little test-project, via Menu File-Project->KS98-1-Engineering. All control requests we confirm with OK.

After Start-up, we see the adjacent controller page.

Now the setpoint is altered (See: page): Insert a setpoint and confirm it. The controller will adapt the process value (simulated by KS98-1 with its correcting variable reaction.
As a matter of fact, every controller must be matched to the process characteristics. This refers mainly to control parameters Xp1, Tn and Tv.

For detailed information including the self-tuning function, plea-

Fig. 106

se, see section Controller CONTR, CONTR+ and PIDMA page: 223) in this manual.
Detailed information on this subject and on the self-tuning possibility is given in this manual and in section Controller (CONTR, CONTR+ and PIDMA) of the operating instructions. The different KS 98-1 operating pages and the operating principle of these pages are described in a separate document (operating manual) apart from the function-related explanations of this manual.
The actual internal values of the instrument/simulator can be observed in the engineering tool.

This is helpful mainly when locating engineering errors.

## On menu item:

Fixed functions - ET Functions - X-Disp : Display of analog value for debug mode , internal ET display items (analog/digital) can be selected.

For these items, positioning and soft-wiring are done as for function blocks.
F4 ( Options - Debug ) can be used to activate the value display (see Fig.: Debug information).

Fig. 105


Fig. 107: Debug Informationen


## II-6 Tips and tricks

## II-6.1 Function keys

## Calling up the help ...

- General descriptions of the ET/KS 98 operating principle
- Survey and description of the library functions (with the function block selected or the parameter dialog box opened). Prerequisite: The checkbox for help must have been clicked during installation.


## F2 Calling the password dialog

## F3 Comparison of the engineerings in KS 98-1 and ET is started.

## Debug mode is activated

KS 98-1 or SIM/KS 98-1 must be connected!

## Search line overlapping

During the wiring mode, line overlappings are searched. The first overlapping is displayed (shown marked). In the upper left corner of the screen, either Acount=0" (result negative) or
 Acount $=1$ " is displayed.

## Search all line overlappings

The overall engineering is searched for operlappings.
Overlappings found are displayed shortly on the screen, but only the last overlapping found is displayed continuously.


## Unify adjacent lines

Lines which belong to one connection, with only a few parallel pixels, can be unified with F7. Thereby, a line segment must be selected. (Shifting using the mouse may be not pixel-exact, however, exact superposition is also possible by means of the
 arrow keys.)

## F9 Line colour / -type of logic connections

On the screen, distinction of analog and logic connections is easier in colour. In a print-out (black and white), distinction by a dashed line is better for clarity. Switch-over is always possible by pressing F9.

Cursor toggling between engineering $\leftrightarrow$ menu bar.
Menu operation with the arrow keys is now possible (if e.g. the mouse is not available). Function corresponds to key $\square$

## Create standard connection

Connections of two dots are drawn automatically as short as possible at right angles (standard connection) and can be edited manually. F11 transforms a selected edited connection into a standard connection.


## Language selection

Language selection (German/English) for the engineering tool operator interface (menus, dialog boxes, etc.) is possible during working in the main menu. However, the language of help texts for KS $98-1$ functions can be se lected only during installation!

Shift + ... ... Unify line segments
When shifting a line over other lines which belong to the same signal source with the Shift key kept down, these lines are dragged and superposed automatically after releasing the shifted line (start segments cannot be shifted!). Closely adjacent lines are superposed automatically by clicking on a connection with the shift key kept down.


Ctrl Multiple connections

+ click
(Wiring mode)
A signal source can be connected with several inputs by marking an already existing connection and clicking on further inputs with the Strg key kept down. Thereby, the screen section can be shifted to the relevant position using the scroll keys, if the input to be connected is out of the visible area.


## Ctrl

+ click
(Survey mode) the print-out, the pages are numbered linewisely from left to right and from top to bottom and can be printed out with or without frame header.


## Ctrl $+Z$ Undo:

Cancels the last action..
Producing a black and white copy
The display window of the KS 98-1 is copied into the clipboard and can be imported then to layout- or graphic-programs e.g. for documentation.


## II-6.2 Mouse key functions

|  | Left mouse key | Right mouse key |
| :---: | :---: | :---: |
| Edit mode | Double-click on a free space: <br> $\rightarrow$ Switches into the wiring mode <br> Click on a function block: <br> $\rightarrow$ Selects (marks) the function block <br> Key held down: <br> $\rightarrow$ Enables the function block to be moved. | Click on a free space; <br> $\rightarrow$ Inserts the previously selected function block. <br> Click on a function block: <br> $\rightarrow$ Opens the parameter dialog of the block.. |
| Wiring mode | Double-click on a free space: <br> $\rightarrow$ Switches into the edit mode <br> Click on a line: <br> $\rightarrow$ Selects (marks) the line Key held down: <br> Enables the line to be moved. | Click: $\rightarrow$ Switches into the survey display. |
| Survey |  | Click: <br> $\rightarrow$ Switches into the wiring mode. <br> The position of the mouse pointer determines which part of the engineering is placed in the center of the wiring display. |

## II-6.3 Tips and tricks

- Search

Entry of a block number (displayed in the upper left of the screen) and acknowledgement with Enter displaces the screen and displays the searched function block with marking (functions also in the survey display).

- Parameter setting

Double click in parameter input field selects the current value for entry. Triple click on P input field opens selecti on dialog box (functions only once per parameter !) Setting cursor into value field with acknowledgement by pres sing any key opens the selection dialog box (functions always !

- Line segments

6 other line segments can be inserted into the last line segment (before the destination input), if the connection is selected. For this purpose, seize the last line segment before the input and draw it into the required direction using the mouse pointer in wiring mode.

- Calculation sequence

The survey display can be used to show the calculation sequence. The sequence is indicated by consecutive mar king of the function blocks.Start/stop of the marking procedure by means of the key " t ". While the procedure is running, pressing key " $r$ " stops the marking and moves back to the previous function block. Pressing key " $v$ " moves to the next function block.

- $v a \rightarrow \leq$

Pixel-exact shifting of selected line (segments) and function blocks

- COM test

Quick communication testing is possible by transmission of an "Empty" engineering to KS 98-1.
Testing the communication can also be done by calling up the password dialogue with without overwriting the existing engineering. The password dialogue can be ended with ESC.

- Copying parameters

If a function block is selected during the edit mode, its parameters can be stored in the clipboard by pressing Cotrl..."C". If another function block of the same type is then selected, the stored parameters can be copied into the block by pressing " cm .... V ". This is a particularly useful feature for all blocks with many parameters (e.g. CONTR; APROGD; ...). The function can also be used to transfer data into other engineerings, provided the same operating version is involved.

- Copying areas of the engineering

If an area has been selected in the survey display by means of the capture frame, its entire contents can be sto red in the clipboard by pressing "Com". Pressing " C " copies the stored data into the engineering, where it can be positioned with the mouse pointer. Parameters and internal connecting lines are maintained. External connections are deleted.

- Moving areas of the engineering

If an area has been selected in the survey display by means of the capture frame, its entire contents can be moved with the mouse, if the sey is held down. Parameters and internal connecting lines are redrawn automatically.

- Abort

Time-consuming functions such as "Compare" (F3) can be aborted with the "x" key.

- Block selection

Insiders enter the short-form name of the required function (e.g. ADSU) followed by acknowledgement to save the detour via the menu bar. Click with the right mouse key to position the function thus selected directly (note up per/lower case!). If the required function is quite close, selecting and de-selecting it is sufficient to produce the same effect.

- Aligning blocks

Selected function blocks of the same type can be aligned in the "survey"
Key III $\rightarrow$ up!
Key II $\rightarrow$ left!

- Searching for not connected "sinks"

$$
\mathrm{NCl} .
$$



## Graphic display of XY profiles

With programmers (APROG, DPROG) and characterizers (CHAR) it is very helpful to view a XY-plot and modify the adjusted parameters in a graphical way.

Button G] calls the program „XY-display" and shows the actual characteristic (over the time „t" or the input ${ }_{\text {, }} \times 1^{\text {" }}$ ) of the selected function block.

## - Characterizer CHAR

Es wird nur der Inhalt eines Funktionsblockes dargestellt! Grundsätzlich sind 11 Stützpunkte vorhanden. Nicht benötigte (gelöschte) Stützpunkte ( $\rightarrow$ Editierfunktionen) werden auf die Parameter des letzten Stützpunktes gesetzt.


Fig.1: Characterizer CHAR

- Analog programmer

Up to 10 data blocks (APROGD; < 100 segments) of a programmer are displayed in a window.
Quantity and sequence of the blocks are defined by the wiring of the Engineering.
The displayed profile starts with the $1^{\text {st }}$ segment; the initial value WpO is not included in the display ! With changes of time values interval times Tp are calculated and transfered.



Fig. 3: Analog programmer with 26 segments; initial value WpO is not included!

- Digital programmer

The display of the program values starts with the $1^{\text {st }}$ segment. the initial value DO is not included! With changes of time values specific interval times Tp are calculated and transfered.


Fig.4: Digital with 26 segments; initial value DO is not included!

## Edit functions

```
    Shift + Click Adds a "xy-point" (analog) repectively a segment (digital)
Double click on Selects a xy-point (analog only; marked with „x").
point
Deletes a selected \(x y\)-point (analog) or a segment (digital)
Left mouse key
shifts a selected \(x y\)-point (analog) or a segment (digital)
```

Analog curve: With shifting a selected point in direction of the following one the rest of the curve is pushed in the same direction. Movement in direction of a foregoing point pulls back the rest of the curve.

Digital curve: Click on the actual value and shift in the requested direction produces a change of state.


Fig.5: Change of digital values of a segment

Right mouse key ... click on a selected xy-point enters a window for numerical definition of the values.
$Y=3.41000 \quad \mathrm{X}=4.38633 \quad$ OK $\quad$ Cancel

Fig.6: Numerical input of co-ordinates

Click on co- $\quad .$. reduces the scale of the according axis stepwise ("Undo" with auto-scaling; see ordinate arrows Menu functions)


## Menu functions

| <File> | <OPEN> | Opens a file |
| :---: | :---: | :---: |
|  | <SAVE> | Saves a file |
|  | <SAVEAS> | Saves a file with file name |
|  | <OK> | Transfer of the parameters to the related function blocks of the Engineering. XY-display will be closed automatically. |
|  | <Quit> | Closes the program without changes ! |
| <Options> | <Communication> | Serial interface (SIM/COM-Port, baud rate, address). <br> These adjustments must be re-entered when opening the program! |
|  | <End of range> | OK Confirms changes. |
|  |  | Auto <br> Automatic scaling of $x / t$ - and $y$-axis within the window |
|  |  | $\mathrm{tMax}=\quad$ Length of the $\mathrm{x} / \mathrm{t}$ - axis (unit of time is defined in APROG resp. DPROG) |
|  |  | $\mathrm{yMax}=\quad$ Length of the $y$-axis |
|  |  | Anzahl $=\quad$ Number of $x y$-points |
|  |  |  |
|  |  | - Programmer: $\leq 100$ (in max. 10 data blocks) |
|  |  | deltaT= Grid of the $x / t$-axis |
|  |  | $\begin{array}{ll} \mathrm{fx}= & \text { Factor of } \mathrm{x} / \mathrm{t} \text {-values. After confirming with OK all } \\ \mathrm{x/t} \text {-values will be multiplied with this factor! } \end{array}$ |
|  |  | $\begin{array}{ll} \mathrm{fy}= & \begin{array}{l} \text { Factor of } y \text {-values. After confirming with OK all } \\ y \text {-values will be multiplied with this factor ! } \end{array} \end{array}$ |
|  |  | $x$ Plus minus Permits negative $x$-values (CHAR) |
|  |  | y Plus minus Permits negative $y$-values (APROGD, CHAR) |

[^0]| Blocknummernzuordnung |  | $x$ |
| :---: | :---: | :---: |
| Block1 | 101 | OK |
| Block2 | 102 | Concel |
| Block3 | 103 |  |
| Block4 |  |  |
| Block5 |  |  |
| Block6 |  |  |
| Block7 |  |  |
| Block8 |  |  |
| Block9 |  |  |
| Block10 |  |  |

:Transfer> <To KS98>
or

<From KS98> Reads the parameters from that KS 98 (resp. SIM/KS98), which is adressed under <Optionen><Kommunikation>.
Transfers the parameters to that KS 98 (resp. SIM/KS98), which is adressed under <Optionen><Kommunikation>.
or

## III Function blocks:

The KS98-1 function library contains all functions which are normally used for plant operation. These include:

- Functions for calculation of mathematic formulas from simple addition to exponent function
- Logic functions and functions for realization of control sequences
- Numerous selection and storage functions are helpful for signal processing.
- Alarm and limit value functions are indispensable for plant safety.
- Interface functions facilitate communication with adjacent and supervisory systems.
- Functions for implementation of complex and flexible control and program sequences as well as profile control tasks meet the most exacting requirements.

The wiring principle of composed functions such as programmer, controller cascades and stepping control are explained in the relevant basic function descriptions in this manual.

Examples for the basic engineering as mentioned in this manual, and further application examples for various require ments are included on a CD as a collection of examples with detailed description, or available on request.

## General KS 98-1 function block features

The features of multi-function unit KS 98-1 are determined by purposeful connection of standard function blocks with adjustable parameters.
In the KS98-1 engineering, a function block represents a black box with analog inputs (from left), analog outputs (to right), digital control inputs (from top) and control or status outputs (to bottom), as shown in the integrator diagram.

The following abbreviations are used for general inputs which mean process values and outputs which mean function results:

- analog inputs: X1, X2, ...
- analog outputs: Y1, Y2, ...
- digital inputs: $\mathrm{d} 1, \mathrm{~d} 2, \ldots$
- digital outputs: $\quad$ z1, z2, $\ldots$

The abbreviations for inputs and outputs with special signification are
 derived from their function.

Not all inputs and outputs of a function block need to be connected. The following rule is applicable: open inputs are without effect. Examples: totalizer, multiplier, AND gate. In some cases, the connection of an input has an additional effect, if e.g. priority handling is concerned (programmer control inputs).


Function blocks are numbered by the engineering tool in the order of occurrence from 100 to max. 450 as standard. Cal culation of function blocks in the unit is dependent on this order. By changing the block number, the handling order is adapted. Function blocks which can be used only once or with reference to the hardware (inputs/outputs) are always within a numeric range of 0-100.

Function blocks are preset to a scanning rate (computing cycle) of 100 ms . The computing cycle can be increased to 800 in steps of 200, 400, whereby the processor load is reduced. Detailed information is given in the ET98 operating manual.

The parameters of each function block are adjustable. Apart from an individual description for documentation purpo ses, the majority of blocks is provided with function-specific parameters. In addition to very special ones, some para meters are quite frequent. For these general values, the same identifiers are always used:
$a, b, c, d \quad$ factors without special signification
$\mathrm{aO}, \mathrm{bO}, \ldots \times 0, \mathrm{y} 0$ appended 0 as a symbol for an offset
$x 0=$ offset of an input, $y 0=$ offset of an output
$\mathrm{T}, \mathrm{Ti} \quad$ times in seconds (delays, pulse or pause duration)
Mode These parameters are used to select function parameter setting by means of the described parameter or by means of an analog input (dynamic parameter setting).

Digital control inputs for binary selection (e.g. SELV1 for selection of 4 analog values) are normally numbered from left to right d1, d2. Note that d2 is the less significant bit despite numbers running in opposed direction. In all cases where the bit order also expresses an order of values, please, refer to the documentation of the special block in the following chapters.

## III-1 Scaling and calculating functions

## III-1.1 ABSV (absolute value (No. 01))



The absolute value of a number is it's number without polarity sign. This is the best solution for scaling a value that can't become negative, in reference to calculating time. This function block should be used, when scaling must not use a lot of calculating time.
Input variable $\times 1$ is multiplied by factor (parameter). Now, constant $\boldsymbol{\exists}$ is added. The absolute value of the resulting value is formed and output at -1 .

## Example:



| Parameter | Description | Range | Default |
| :---: | :---: | :---: | :---: |
| 3 | Multiplication factor | -29 999... 999999 | 1 |
| 96 | Offset | -29 999... 999999 | 0 |

## III-1.2 ADSU ( addition/subtraction (No. 03))



Input variables $\times 1 \ldots \times 4$ are multiplied by factors $\bar{\xi}$. . . Constant 19 is added to the sum of evaluated inputs. Value " 0 " is assigned automatically to unused inputs.

| Parameter | Description | Range | Default |
| :--- | :--- | :--- | :--- |
| $\boldsymbol{\exists} . \mathbf{- a}$ | Multiplication factors | $-29999 . .9999990$ | 1 |
| $-1 \overline{0}$ | Offset | $-29999 . . .999999$ | 0 |

## III-1.3 MUDI ( Multiplication / division (No. 05))



$$
\mathrm{y}_{1}=\frac{\mathrm{A} \cdot \mathrm{~B}}{\mathrm{C}}=\frac{\left(\mathrm{a} \cdot \mathrm{x}_{1}+\mathrm{a}_{0}\right) \cdot\left(\mathrm{b} \cdot \mathrm{x}_{2}+\mathrm{b}_{0}\right)}{\mathrm{c} \cdot \mathrm{x}_{3}+\mathrm{c}_{0}}
$$

 put variable corresponds to the product.
Value " 1 " is assigned automatically to unused inputs.
With divisions by " 0 " ( $C=\mathbf{C} \cdot \times \mathbf{S}+\mathbf{C}=0$ ) output -1 is set to $1.5 \cdot 10^{37}$.

| Parameter | Description | Range | Default |
| :---: | :---: | :---: | :---: |
| ヨ. | Multiplication factors | -29 999... 999999 | 1 |
| 36, 6 | Offset | -29 999... 999999 | 0 |

## III-1.4 SQRT ( square root function (No. 08))



Constant $\mathbf{a x}$ is added to input variable $\mathbf{x} \mathbf{1}$ multiplied by . The result is subjected to square root extraction.
Constant $=10$ is added to the result of square root extraction.
If the expression under the root is negative, the square root expression is set to 0 . As a result: ' $-1=0$.
If the input is not connected, this is interpreted as $\times 1=0$.

| Parameter | Description | Range | Default |
| :---: | :---: | :---: | :---: |
| 3 | Multiplication factors | -29 999... 999999 | 1 |
| 96 | Input offset | -29 999... 999999 | 0 |
| YG | Output offset | -29 999... 999999 | 0 |

## III-1.5 SCAL ( scaling (No. 09))



$$
\mathrm{y}_{1}=\left(\mathrm{a} \cdot \mathrm{x}_{1}+\mathrm{a}_{0}\right)^{\operatorname{Exp}}
$$

Input variable $\times 1$ is multiplied by factor a and added to constant $\boldsymbol{a} \mathbf{E x}$.
The result $(\boldsymbol{a} \cdot \times 1+\boldsymbol{a} \mathbf{0})$ is set to the power E×F.
If $\times 1$ is not used, this is interpreted as $\times 1=0$. With $E \times F=0$ SCAL outputs 1 .

| Parameter | Description | Range | Default |
| :--- | :--- | :--- | :--- |
| B | Multiplication factor | $-29999 . .999999$ | 1 |
| EXF | Offset | $-29999 . . .999999$ | 0 |
| EXF | Exponent | $-7 \ldots 7$ | 1 |

$$
\text { Example: } \quad y_{1}=\sqrt[3]{x_{1}^{2}}=x_{1}^{\frac{2}{3}}=x_{1} 0^{0 . \overline{6}}
$$

This function block should be used only, if the exponential function is needed. Factor a and the offset a0 are also avai lable with functions that need less calculating time (e.g. ADSU, MUDI, ABSV).

## III-1.6 10EXP (10s exponent (No. 10))



$$
\mathrm{y}_{1}=10^{\mathrm{x} 1}
$$

Input value $\times 1$ is calculated according to formula $y_{l}=10^{\times l}$ and output at the $\because 1$ output.
An unwired $\times 1$ is interpreted as $\times 1=0$ (in this case -1 is 1 ).
If the value at input $\times 1$ is higher than 36,7 , an overflow may occur. In this case, output ' -1 is set to $1.5 \mathrm{w} 10^{37}$ rather than forming the power.

Note:
10 EXP is the reversal function of function LG10.

## III-1.7 EEXP (e-function (No. 11))



The e-function is calculated.
If input signal $\times 1$ is higher than 85 , there may be an overflow. In this case, $\exists 1=1,5 \mathrm{w} 10^{37}$ is output rather than forming the power.
If $\chi 1$ is not wired, this is interpreted as $火 1=0$ and thus as $-1=1$.

Note:
EEXP is the reversal function of function LN.

## Examples:

With an input value of $\times 1=5$, output value $\lrcorner 1=148,413159$.
With an input value of $\times 1=0,69314718$, output value $\lrcorner=1=2$.

## III-1.8 LN (natural logarithm (No. 12))



The natural logarithm of input variable $\times 1$ is formed.
The basis of natural logarithms is constant e (2,71828182845904).
If $\times 1$ is not wired, this is interpreted as $\times 1=1$. In this case $-\exists 1$ is 0 .
With a negative input variable $\times 1,{ }^{\prime} \exists 1=-1,5_{w} 10^{37}$ is set.
Note:
LN is the reversal function of function EEXP.

## Examples:

The result of input value $\times 1=63$ is an output value of $\because 1=4,143134726$.
The result of input value $<1=2,71828182845904$ is an output value of $-1=1$.

## III-1.9 LG10 (10s logarithm (No. 13))



$$
y_{1}=\log (x 1)
$$

The common logarithm of input variable $\times 1$ is formed.
LG10 provided the logarithm of a number to base 10.
If $\times 1$ is not wired, this is interpreted as $\times 1=1$. In this case, $-\exists 1$ is 0 .

With a negative input variable $\times 1, ~ ' \unlhd 1=-1,5_{w} 10^{37}$ is set.

Note:
LG10 is the reversal function of function 10EXP.

## Examples:

The result of input value $\times 1=63$ is an output value of $\unlhd 1=1,799340549$.
The result of an input value $\times 1=2,71828182845904$ is an output value of $\unlhd 1=1$.

## III-2 Non-linear functions

## III-2.1 LINEAR (linearization function (No. 07))



Block LINEAR can be used for calculation of $\mathrm{y}=\mathrm{f}(\mathrm{x})$.
Max. 11 adjustable segment points for simulation or linearization of non-linear functions are available. Each segment point comprises input $x(1)$ and output $y(1)$.

The segment points are connected automatically by straight lines. Each input value x 1 has a defined output value y 1 . With an input value x 1 smaller than parameter $\mathrm{x}(1)$, the output value is equal to the $\mathrm{y}(1)$ value. If input value x 1 exceeds the highest parameter $x(n)$ value, the output value is equal to the relevant $y(n)$ value.

The condition for input of configuration parameters is that values are input in ascendant order $(x(1)<x(2)<\ldots<x(11))$. The end of value pairs is marked by the "OFF" value in the next input value $x(n+1)$.

This function block is cascadable. It has 2 inputs: The 1st input provides the variable which must be linearized. The 2nd input (case) is used to connect the previous linear block.

## Inputs/outputs

| Analog inputs |  |
| :---: | :--- |
| X | Input variable which must be linearized |
| $\mathrm{E}=\mathrm{E}$ | Cascade input |

## Analog outputs

$$
\begin{array}{c|c}
\hline \hline Y & \text { Linearization result } \\
\hline \hline
\end{array}
$$

## Parameter

| Parameter | Description | Range | Default |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \times(1) \quad=-\quad \\ & \times(11) \end{aligned}$ | Input value for segment point 1...11 | $\begin{aligned} & -29999 . . .999999,0 F F \\ & \times(1) \times(2)<\ldots . . . \times(11) \end{aligned}$ | $\begin{gathered} x(1)=0, x(2)=1, x(3)=2, \ldots, \\ x(11)=10 \end{gathered}$ |
| $\text { - }-=(11) \quad=$ | Output value for segment point 1... 11 | -29999 ... 999999 | $\begin{gathered} y(1)=0, y(2)=1, y(3)=2, \ldots, \\ y(11)=10 \end{gathered}$ |

## Example: linear as a cascade

Fig. 108


## III-2.2 GAP (dead band (No. 20))



The range of the dead band is adjusted with parameters Low (lower limit) and High (upper limit). If input value $\times 1$ is within the dead band (Low $\leq \times 1 \leq$ High), output value $-\exists 1=0$. If $\times 1$ is not used, this is interpreted as $\times 1=0$.

## Example:

In the following example, -10 for Low and 50 for Hi ヨh was used.
Fig. 109


| Parameter | Description | Ranae | Default |
| :---: | :---: | :---: | :---: |
| Low | Lower limit value | -29 999... 999999 | 0 |
| Hi grion | Upper limit value | -29 999... 999999 | 0 |

## III-2.3 CHAR (function generator (No. 21))



With max. 11 adjustable value pairs, non-linear functions can be simulated or linearized. Each value pair comprises input $\times \subset 1$ ) and output $\unlhd(1 \geqslant$. The number of value pairs is determined using configuration parameter $\bar{G}$ (number of segments +1 corresponds to the number of value pairs).

The value pairs are connected automatically with straight lines so that each input value $\times 1$ provides a defined output
 value $\times 1$ is higher than the highest parameter $\times(\boldsymbol{r})$ the output value is equal to the corresponding ${ }^{\prime}(\mathrm{ra})$ value.

During entry of the configuration parameters, the condition is that the assigned values stand in ascending order ( $<(1)<\times(2)<\ldots<\times(11)$.

| Configuration | Description | Range | Default |
| :---: | :---: | :---: | :---: |
| S®ヨ | Number of segments | 1... 10 | 2 |
| 人(1)... (11) | Input value for curve point | -29 999... 999999 | 0...10* |
|  | Output value for curve point | -29 999... 999999 | 0...10* |



Unless one CHAR is sufficient, the following tip might be helpful:
whereby $x 10$ of CHAR I $=x 1$ of CHAR II and $x 11$ of CHAR I $=x 2$ of CHAR II
Fig. 110


## III-3 Trigonometric functions

## III-3.1 SIN (sinus function (No. 80))



$$
y_{1}=\sin (x 1)
$$

The function provides the sinus of the input value, i.e. $x 1$ is the angle the sinus of which is calculated. Parameter 5 - let. is used to adjust, if the angle is provided in degree of angle $\left[^{\circ}\right]$ or in radian.

The calculation clarity can be reached by limiting the input signal (e.g. to the 1 st or 4th quadrant $\left( \pm 90^{\circ} / \pm 0 / 2\right)$ ). Internal limiting is not provided. If input value $<1$ is out of the range in which the sinus function can still provide purposeful values, output $₫ 1$ is set to $1,5 \cdot 10^{37}$.

Example degree of angle:

$$
\exists 1=\sin (\times 1) \times 1=30^{\circ} \triangleq \quad \cong 1=0,5
$$

Example radian:
$\exists 1=\sin (\times 1) \times 1=90 \mathrm{rad} \hat{=} \quad \exists 1=0,89399666$

| Parameter | Description | Controller display |
| :---: | :---: | :---: |
| Geleut | Unit: degree of angle (default) | Arie. dey |
|  | Unit: radian | Radign |

$1 \mathrm{rad}=180^{\circ} / \pi=57,296^{\circ}$
$1^{\circ}=\pi / 180^{\circ}=0,017453 \mathrm{rad}$
Control with the pocket calculator:
The function for the calculation in "rad" with the pocket calculator is limited to e.g. $\pm 8 \pi$.
$\rightarrow 90 / \pi=28,6479: \sin (0,6479 \cdot \pi)=0,893996664$
Also during input in "0" usually a limitation is effective in the pocket calculator (e.g. $<1440^{\circ}$ )!

## III-3.2 COS (cosinus function ( No 0.81 ))



$$
\mathrm{y}_{1}=\cos (\mathrm{x} 1)
$$

The function provides the cosinus of the input value, i.e. $\times 1$ is the angle the cosinus of which is calculated.


Calculation clarity can be reached by limiting the input signal（e．g．to the 1 st and 2 nd quadrant（ $0^{\circ} \ldots 180^{\circ} / 0 \ldots \pi$ ）．Inter－ nal limiting is omitted．If input value x 1 is out of the range in which the cosinus function can still provide purposeful values，output $\unlhd 1$ is set to $1,5 \cdot 10^{37}$ ．

## Example degree of angle：

$\because 1=\boldsymbol{\operatorname { c o s }}(\times 1) \times 1=60^{\circ} \triangleq \quad \xlongequal{\circ} \quad \exists 1=0,5$
Example radian：
$' \exists 1=\cos (\times 1) \times 1=45 \mathrm{rad} \triangleq \quad \exists 1=0,525321988$

| Parameter | Description |
| :--- | :--- |
| Controller display |  |
| Sel lev． | Unit：degree of angle（default） |
|  | Unit：radian |

Important：When controlling with the pocket calculator see $\rightarrow$ page 100

## III－3．3 <br> TAN（tangent function（No．82））



$$
\mathrm{y}_{1}=\tan (\mathrm{x} 1)
$$

$$
\text { valid for } \mathrm{x}_{1} .-90^{\circ}<\mathrm{x}_{1}<+90^{\circ}\left(-\frac{\pi}{2}<\mathrm{x}_{1}<\frac{\pi}{2}\right)
$$

The function provides the tangent of the input value，i．e．$\times 1$ is the angle the tangent of which is calculated．


For calculation clarity the argument range is limited to the 1 st or 4th quadrant $\left(-90^{\circ} \ldots 90^{\circ}\right.$ or $\left.-\pi / 2 \ldots \pi / 2\right)$ ．If input value $x 1$ is out of this range，output $-1-1, \cdot 10^{37}(\ll 1<-90[-6 / 2])$ or $1,5 \cdot 10^{37}(\ll 1>90[\pi / 2])$ is set．

## Example degree of angle：

$\because 1=\tan (\times 1) \times 1=60^{\circ} \triangleq \cong 1=1,73205$

## Example radian：

$\because 1=\tan (\times 1) \times 1=1,53 \mathrm{rad} \xlongequal{\wedge} \quad \exists 1=24,498$

| Parameter | Description | Controller display |
| :---: | :---: | :---: |
| Sこl ¢たt | Unit：degree of angle（default） | Ariق．dey |
|  | Unit：radian | Ra゚i ar |

Important：When controlling with the pocket calculator see $\rightarrow$ page 100

## III-3.4 COT (cotangent function (No. 83))



The function provides the cotangent of the input value, i.e. X 1 is the angle the cotangent of which is calculated. Pa-


For calculation clarity, the range for the argument is limited to the 1 st and 2 nd quadrant ( $0^{\circ} \ldots 180^{\circ}$ or $0 \ldots \pi$ ). If input value x 1 is out of this range, output $\lrcorner 1$ is set to $1,5 \cdot 10^{37}(\times 1<0)$ or $1.5 \cdot 10^{37}(\times 1>180[\times 1>\pi])$.

## Example degree of angle:

$$
\exists 1=\tan (\times 1) \times 1=45^{\circ} \triangleq \quad \cong 1=1
$$

## Example radian:

$' \exists 1=\tan (\times 1) \times 1=0,1 \mathrm{rad} \triangleq \quad \exists 1=9,967$

| Parameter | Description | Controller displav |
| :---: | :---: | :---: |
| Select. | Unit: degree of angle (default) | Ariヨ. ${ }^{\text {aleg }}$ |
|  | Unit: radian | Rabi ari |

Important: When controlling with the pocket calculator see $\rightarrow$ page 100

## III-3.5 ARCSIN (arcus sinus function (No. 84))



$$
\begin{gathered}
y_{1}=\arcsin \left(x_{1}\right) \\
\text { valid for } x_{1}-1 \leq x_{1} \leq+1
\end{gathered}
$$

The function provides the arcus sinus of the input value, i.e. x 1 is the angle the arcus sinus of which is calculated. Pa rameter $\mathbf{S}$ let. is used to adjust, if the angle is provided in degree of angle $\left.{ }^{\circ}\right]$ or in radian.

The calculation is output as degree of angle $\left[-90^{\circ} \ldots 90^{\circ}\right]$ or as radian $\left[-\frac{0}{2} \ldots \ldots / 2\right]$. With arguments out of the function validity range, output -1 is limited to $-1,5 \cdot 10^{37}(\times 1<-1)$ or $1,5 \cdot 10^{37}(\times 1>1)$.

## Example degree of angle:

$\because 1=\arcsin (\times 1) \times 1=0,5^{\circ} \quad \wedge \quad \exists 1=30$

## Example radian:

$\because 1=\arcsin (\times 1) \times 1=1 \mathrm{rad} \Leftrightarrow \quad \exists 1=1,571$

| Parameter | Description | Controller display |
| :---: | :---: | :---: |
| Seleむt | Unit: degree of angle (default) | Ars deg |
|  | Unit: radian | Radi.ar |

## III-3.6 ARCCOS (arcus cosinus function (No. 85))




$$
y_{1}=\arccos (x 1)
$$

valid for $x_{1}:-1 \leq x_{1} \leq+1$
The function provides the arcus sinus of the input value, i.e. $\times 1$ is the angle the arcus sinus of which is calculated. Parameter $\mathbf{S}$ let. is used to adjust, if the angle is provided in degree of angle $\left.{ }^{\circ}\right]$ or in radian.

Calculation is either as degree of angle $\left[0^{\circ} \ldots 180^{\circ}\right]$ or as radian $[0 \ldots \pi]$. With arguments out of the function validity range, output -1 is set to $1,5 \cdot 10^{37}(\times 1<-1)$ or $-1,5 \cdot 10^{37}(\times 1>1)$.

## Example degree of angle:

$\because 1=\arccos (\times 1) \times 1=0,5^{\circ} \triangleq \quad \Theta 1=60$
Example radian:
$\exists 1=\arccos (\times 1) \times 1=0,5 \mathrm{rad} \triangleq \quad \cong 1=1,047$

| Parameter | Description | Controller display |
| :---: | :---: | :---: |
| Seleむt. | Unit: degree of angle (default) | Ara ${ }^{\text {a }}$ - |
|  | Unit: radian | Ra゙i ar |

## III－3．7 ARCTAN（arcus tangent function（No．86））



The function provides the arcus tangent of the input value，i．e． $\mathbf{~} 1$ is the angle the arcus tangent of which is calcu－ lated．Parameter Sel let．is used to adjust，if the angle is provided in degree of angle［ ${ }^{\circ}$ ］or in radian．

The calculation is output either as degree of angle $\left[-90^{\circ} \ldots 90^{\circ}\right]$ or as radian $[-\Pi / 2 \ldots \Pi / 2]$ ．

## Example degree of angle：

$$
\because 1=\arctan (\times 1) \times 1=1^{\circ} \quad \triangleq \quad y 1=45
$$

Example radian：
$' \exists 1=\arctan (\times 1) \times 1=12 \mathrm{rad} \hat{=} \quad \exists 1=1,488$

| Parameter | Description | Controller displav |
| :---: | :---: | :---: |
| S®lごく | Unit：degree of angle（default） | Arre．deg |
|  | Unit：radian | Rabi ${ }^{\text {ara }}$ |

## III－3．8 ARCCOT（arcus cotangent function（No．87））



The function provides the arcus cotangent of the input value，i．e．$\$ 1$ is the angle the arcus cotangent of which is cal－ culated．Parameter

The calculation is output in degree of angle $\left[0^{\circ} \ldots 180^{\circ}\right]$ and in radian $[0 \ldots \pi]$ ．
Example degree of angle：
$\because 1=\operatorname{arccot}(\times 1) \times 1=45^{\circ}$
$\triangleq \quad ヨ 1=1,273$
Example radian：
$\exists 1=\operatorname{arccot}(\times 1) \times 1=-12 \mathrm{rad} \triangleq \quad \exists 1=3,058$

| Parameter | Description | Controller displav |
| :---: | :---: | :---: |
| Sel E¢t | Unit：degree of angle（default） | Aroundeg |
|  | Unit：radian | Rabigro |

## III-4 Logic functions

## III-4.1 AND (AND gate (No. 60))



$$
\mathrm{z}_{1}=\mathrm{d}_{1} \quad \text { AND } \mathrm{d}_{2} \quad \text { AND } \mathrm{d}_{3} \text { AND } \mathrm{d}_{4}
$$

Logic function AND combines inputs 1 ...d according to the truth table given below. Unused inputs are interpreted as logic 1.

| 01 | -2 | ds | 04 | z1 | not. 22 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 |

## III-4.2 NOT (inverter (No. 61))



Logic input signal is output invertedly at $\because 1$. If 1 is not wired, this is interpreted as logic 0 .

| -1 | hot. $\mathbf{z 1}$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |

Not behaves different, dependent from
-Download e.g. POWER ON (RAM-Buffer empty ) -POWER ON (RAM-Buffer o.k.)

| for example | initialization | first calculation |
| :--- | :---: | :---: |
| Download or online $\rightarrow$ offline | $z 1=0$ | $z 1=1$ |
| POWER ON and RAM o.k. | $z 1=1$ | $z 1=1$ |

## III-4.3 OR (OR gate (No. 62))



Logic function OR combines inputs $1 . . .04$ according to the truth table given below. Unused inputs are interpreted as logic 0 .

| 01 | 0 | 0.3 | 04 | z 1 | not. 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 0 | 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 |

## III－4．4 BOUNCE（debouncer（No．63））



This function is used for de－bouncing a logic signal．The change of input signal $\boldsymbol{d} 1$ is transferred to output $\boldsymbol{\Sigma} 1$ only， when it remained constant for the time adjusted in parameter Delay．The time－out accuracy is dependent of the sam－ pling interval assigned to the function．

## Example：

－Del ヨ＇ヨ＝0，5s for assignment to
－sampling interval 100 ms means that the signal is transferred only after $\geq 0,5 \mathrm{~s}$ ．
－Sampling interval 200 ms means that the signal is transferred only after $\geq 0,6 s$ ．
－Sampling interval 400 ms means that the signal is transferred only after $\geq 0,8 \mathrm{~s}$ ．
－Sampling interval 800 ms means that the signal is transferred only after $\geq 0,8 \mathrm{~s}$ ．

| Parameter | Description | Range | Default |
| :--- | :--- | :--- | :--- |
| Del．ق＇コ | Switch－on and off delay time | $0 \ldots . .999999[\mathrm{~s}]$ | 0 |

## III－4．5 EXOR（exclusive OR gate（No．64））



$$
\mathrm{z}_{1}=\mathrm{d}_{1} \text { EXOR } \mathrm{d}_{2}
$$

Logic inputs $\boldsymbol{1}$ and 2 are combined into $\leq 1$ according to the truth table given below．Unused inputs are inter－ preted as logic 0 ．

Output $\mathbf{\Sigma} 1$ is 0 ，when the two inputs are equal（both 0 or both 1 ）．

| 01 | $\mathbf{0} 2$ | $\boldsymbol{z} 1$ | hot $\mathbf{z 1}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |

## III－4．6 FLIP（D flipfilop（No．65））



－the signal at clock input 1 －uck changes from 0 to 1 （positive flank），and
－when inputr゙ッショt is logic 0 ．


## 「ごことも has priority！

 lected for this block（100，200， 400 or 800 ms ）．
In the switch－on status（initial condition）， $\mathbf{\Sigma 1}=0$ ！Unused inputs are interpreted as logic 0 ．

This function has a＂memory＂．This means：after power－on，it continues operating with the statuses at $\Sigma 1$ and hot．$\Sigma 1$ ，which existed at power－off，provided that the RAM data are still unchanged．

Inputs／outputs

| Digital inputs |  |
| :---: | :---: |
|  | D input－This signal is output via z1 by the positive flank（ $0 \rightarrow 1$ ）of 1 lock，whenreset．is not 1 ． |
| Clowk | Clock input－A positive flank transfers the instantaneous status at input Signal to output z1，whenreset is not 1. |
| reset | Reset input－sets z1 to 0 |


| Digital outputs |  |
| :---: | :--- |
| $\mathbf{~} 1$ | Flipflop output |
| not． $\mathbf{z 1}$ | Flipflop output NOT z1 |

## III-4.7 MONO (monoflop (No. 66))



The function generates a positive pulse of length $\mathrm{Ti}_{1}$ at output z 1 , when a positive flank at trigger input d 1 is detected. It generates a positive pulse of length $\mathrm{Ti}_{2}$ at output z 3 , when a negative flank at trigger input d 2 is detected.

Pulse duration $T i_{1}$ is adjusted either as parameter Ti1 or read in via inputs Ti1. The origin of pulse duration is selected via parameter Mode 1. The duration of an output pulse is matched to the new values with changes at inputs Ti1/Ti2. With input values Ti1/Ti2 B 0, the pulse is output for the duration of one scanning cycle.

The function is re-triggerable. I.e., if a new trigger condition is detected during a pulse output, the remaining pulse time to be output is prolonged to a full pulse length.
The pulse duration accuracy is dependent of the sampling time, which is assigned to the function.
Example:
$\mathrm{Ti}=0,9$ s for assignment to

- sampling interval 100 ms means that the signal is output during $=0,9 \mathrm{~s}$.
- Sampling interval 200ms means that the signal is output during $=1,0$ s.
- Sampling time 400 ms means that the signal is output during $=1,2 \mathrm{~s}$.
- Sampling interval 800 ms means that the signal is output during $=1,6 \mathrm{~s}$.


## Inputs/outputs

| Digital inputs |  |
| :---: | :---: |
| d1 | Triggerinput: Pulse at $\mathbf{\Sigma 1}$ and not $\mathbf{z} 1$ with positive flank $0 \rightarrow 1^{\text {a }}$ |
| 02 | Triggerinput: Pulse at $\mathbf{z} \mathbf{S}$ and not $_{\text {a }} \mathbf{3}$ with positive flank $1 \rightarrow 0$ |
| Analog inputs |  |
| Til |  |
| Ti2 |  |
| Digital outputs |  |
| z1 | Positive pulse of length $\mathrm{Ti}_{1}$, when a positive flank at input-d was detected. |
| not. z1 | Negative pulse of length $\mathrm{T}_{1}$, when a positive flank at input 1 was detected. |
| 23 | Positive pulse of length $\mathrm{Ti}_{2}$, when a positve flank at input 22 was detected. |
| not. zS | Negative pulse of length $\mathrm{Ti}_{2}$, when a positive flank at input $\mathbf{d} 2$ was detected. |

## Parameters:

| Parameter | Description |  | Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| Mode 1 | Source of pulse duration at $\boldsymbol{\Sigma} 1$ | Parameter Ti1 | F:ara. Til | $\leftarrow$ |
|  |  | 'Input Tii | Infut. Til |  |
| Mode 2 | Source of pulse duration at $\boldsymbol{\Sigma} \mathbf{3}$ | 1 Parameter Ti2 | Fiars. Ti2 | $\leftarrow$ |
|  |  | - Input Ti2 | Infut. Ti2 |  |
| Ti 1 | Duration of the pulse generated by 1 , when Mode 1 = Pares. Ti 1 is entered. |  | 0,1...999 999 [s] | 1 |
| Ti2 | Duration of the pulse generated by d 2 , when Mode 2 F F.ar: ${ }^{\text {a }}$. Ti 2 is entered. |  | 0,1... 999999 [s] | 1 |

## III-4.8 STEP (step function for sequencing (No. 68))



The STEP function realizes the individual steps for sequencing.
The function starts with RESET at step 1 and remains at this step, until the relevant condition input $d_{1}$ or the skip input is set from 0 to 1 . This is followed by switch-over to step 2 . The procedure for all further steps is identical.
The step number is output as a value at output Step.

## Example:

 dition at 4 is checked only when calling up the function for the next time. Thus immediate switch-over is prevented. As long as $\mathbf{d}=0$, the value of output $\mathbf{S t - E F}$ remains 3 .
Alternatively, a positive flank at input 三ki i $\mathbf{F}$ also leads to switch-over to the next step (independent of the status at


The function has a 'memory'. This means: after power-on, it continues operating with the step at power-off, provided that the RAM data are still unchanged.

When several switch-over conditions are 1 simultaneously (e.g. $\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d}, \mathrm{~d} 4$ and d ), only the instantaneously effective input is handled. I.e. in each calculation cycle, switch-over is only by one step. For realizing a sequencing with more than 10 steps, the STEP function can be cascaded:
The wiring example shows how 2 STEP functions are cascaded. With cascading, step number $1 . . . n$ is output always as a value at output Ster of the last follow-up step.


For resetting the cascaded stepping control, reset wiring at the 1 st function block is required.

## Inputs/outputs

| Digital inputs |  |
| :---: | :---: |
| -1. . - dig | Condition inputs for switching over to the next step |
| ト- | With inputreset = 1, output Ster is set to 1 (only with individual function or at the first step of a cascade). With the follow-up steps of a cascade, output $y_{1}=$ the $\bar{\Gamma}=\mathbf{E}$ input is set. reset. has the highest priority of all digital inputs. |
| Stop | With input St.oF=1, the function block remains in the instantaneous step ( -1 and $\boldsymbol{\Sigma} 1$ remain unchanged, unlessrest is switched to 1 ). |
| Ekif | This input reacts only to a positive flank, i.e. on a change from 0 to 1 . At this flank the STEP function switches over to the next step without taking the status at the relevant $\mathrm{d}_{\mathrm{i}}$ input into account. |

## Analog input

E:Esc $\quad$ Used for STEP function cascading. At the first STEP function of a cascade

## Digital output

activ
acte $i v=1$ indicates that the STEP function is still in the active status or in reset. aut. $\mathrm{i} v=0$ indicates that the STEP function has elapsed.

| Analog output |  |
| :---: | :--- | :--- | :--- |
| Ster. | The value at St.eF indicates the current step of the STEP function. With cascading, the value at $\mathbf{C}$ ase is <br> added to this value. |

## No parameters!

## III-4.9 TIME1 (timer (No. 69))



The function outputs the change of signal status at d 1 with a delay at z 1 .
The delay time can be adjusted separately for each change direction of the signal status! (positive and negative flank).
With change from 0 to 1 at input d1, output $z 1$ is switched to 1 with a delay of time $T 1$. With change from 1 to 0 at input d 1 , output z 1 is switched to 0 with a delay of time T 2 .

Time T 1 is adjusted either as parameter T 1 or read in via input T 1 .
Time T2 is adjusted either as parameter T2 or read in via input T2.
The time origin is selected via parameter Mode.

Inputs/outputs

| Digital input | This signal is output with a delay at output $\boldsymbol{\Sigma 1}$ and negated at output not. $\boldsymbol{\Sigma 1 .}$ |
| :--- | :--- |
| -1 |  |


| Analog inputs |  |
| :---: | :---: |
| T1 | Delay time T1 [s], by which the positive signal of 1 is delayed, when Mode = Infuts. |
| T2 | Delay time T2 [s], by which the negative signal of in is delayed, when Mode = Infuts |


| Digital outputs |  |
| :--- | :--- |
| z1 | Delayed input signal -1. |
| not. $\mathbf{z 1}$ | Inverted delayed input signal d1. |

## Configuration:

| Configuration | Description | Range | Default |
| :--- | :--- | :--- | :--- | :---: |
| Morde | Source of delay times | parameters T1 and T2 |  |
|  | Inputs T1 and T2 |  |  |

The pulse duration accuracy is dependent of the time group to which the function is assigned.
It is an integer multiple of the sampling interval adjusted for this block (100, 200, 400, 800ms).

## Example:

$\mathrm{T} 1=0,7 \mathrm{~s}$ with assignment to

- sample time 100 ms means, delay time of the positive flank is $0,7 \mathrm{~s}$.
- sample time 200 ms means, delay time of the positive flank is $0,8 \mathrm{~s}$.
- sample time 400 ms means, delay time of the positive flank is $1,2 \mathrm{~s}$.
- sample time 800 ms means, delay time of the positive flank is $1,6 \mathrm{~s}$.

Example with different delay time T1 and T2
Fig. 111


## III-5 Signal converters

## III-5.1 AOCTET (data type conversion (No. 02))



Function AOCTET converts an analog value (X1) into the individual bytes (Ooct1-4) of a data type as used e.g. for trans mission via the CAN bus ( see CPREAD / CPWRIT ). In the CAN notation, the bytes are transmitted in Intel format. Unless connected instruments are in compliance with this notation, word or bytewise echange of the bytes may be necessary.
The function works in both directions simultaneously ( analog > bytes / bytes > analog ) with separate data type adjust ment in the parameters.

| Analog inputs: |  |
| :---: | :--- |
| R1 | analog input value |
| Ioct.1..4 | analog input byte value 1 |


| Analog outputs: |  |
| :---: | :--- |
| Y 1 | analog output value |
| I out. 1. 4 | analog output byte value 1 |

## Parameters:

| Parameter | Description | Value range | Default |
| :--- | :--- | :--- | :---: |
| I out. | data type of analog $>$ byte conversion | $0 \ldots . .999999[s]$ | 0 |
| OL.t. | data type of byte $>$ analog conversion |  |  |

The following data types are available

| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Uint8 | Int8 | Uint16 | $\operatorname{Int16}$ | Uint32 | $\operatorname{Int32}$ | Float |

## III-5.2 ABIN (analog $\leftrightarrow$ binary conversion (No. 71))



Analog input variable $\times 1$ is converted into a binary number, a BCD number or a selection "1 out of 8 ". Thereby, $\times 1$ is always rounded off (down for values $<0,5$, up for values $\geq 0,5$ ).
Simultaneously, binary input values $1 . . \mathrm{dB}$ ( considered as a binary number or a BCD number) can be converted into an analog output variable. The conversion mode is determined by configuration parameter Select.

## 

## Conversion analog value into binary number:

The analog input value at $\times 1$ is converted into a binary variable, which is output in binary form at outputs $\geq 1 \ldots 8$ $\left(z 1=2^{0} \ldots \mathbf{z}=2^{7}\right)$. The range is within $0 \ldots 255$.
Out of the range, the output allocation is:

| Input | $\mathbf{z 1}$ | $\mathbf{z 2}$ | $\mathbf{z S}$ | $\mathbf{z 4}$ | $\mathbf{z 5}$ | $\mathbf{z 6}$ | $\mathbf{z 7}$ | $\mathbf{\Sigma B}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\times 1 \leq 0$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\times 1 \geq 255$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

## Conversion binary number into analog value

A binary number at digital inputs $1 \ldots 8\left(1=2^{0} \ldots 8=2^{7}\right)$ is converted into an analog output variable and output at analog output $\unlhd 1$. The range is within $0 . . .255$.

BCD - conversion ('Select = ane $->B C D$ ) Converting a value into a BCD number
The analog input value at $x 1$ (range $0 \ldots 99$ ) is output as a BCD number at outputs $\geq 8 \ldots z 5$ and $\leq 4 \ldots \geq 1$.
Example: $x 1=83 \rightarrow$ the output allocation is:

| Input | $\mathbf{z 1}$ | $\mathbf{z 2}$ | $\mathbf{z 3}$ | $\mathbf{x 4}$ | $\mathbf{z 5}$ | $\mathbf{z 6}$ | $\mathbf{z 7}$ | $\mathbf{z 8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\times 1=83$ | 2 |  |  | 2 | 2 |  |  | 2 |
| BCD | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |

Out of the range, the output allocation is:

| Input | z1 | z2 | IS | z4 | 55 | T6 | I 7 | 工8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| <1 299 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | 0 |  |  |  | 0 |  |  |  |
| $\times 1 \leq 0$ | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
|  | 9 |  |  |  | 9 |  |  |  |

## Converting a $B C D$ number into an analog value

$B C D$ input values at inputs 1.
With a BCD number＞ 9 at inputs 1 ．．． 44 or 51 is limited to 9 ．Out of the range，the out－ put allocation is：

| Output | 01 | 2 | 4.3 | 04 | 0.5 | 06 | 07 | 48 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ＇11＝ | 0 |  |  |  | 0 |  |  |  |
|  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| － $1=$ | 9 |  |  |  | 9 |  |  |  |

Converting a value into selection＂1 out of 8＂（＇Gel ect＝ヨトヨく－＞1，S）
An analog input value at $\times 1$（range $0 \ldots 8$ ）selects none or one of the 8 outputs $\mathbf{\Sigma 1} \ldots \mathbf{\Sigma}$ ．
Example for conversion value（ $x 1=5$ ）into selection：

| Input | $\mathbf{z 1}$ | $\mathbf{z 2}$ | $\mathbf{z 3}$ | $\mathbf{z 4}$ | $\mathbf{\Sigma 5}$ | $\mathbf{z 6}$ | $\mathbf{z 7}$ | $\mathbf{\Sigma S}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\times 1=5$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |

Out of the range，the output allocation is：

| Input | $\mathbf{z 1}$ | $\mathbf{z 2}$ | $\mathbf{\Sigma S}$ | $\mathbf{z 4}$ | $\mathbf{\Sigma 5}$ | $\mathbf{z 6}$ | $\mathbf{\Sigma 7}$ | $\mathbf{\Sigma B}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\times 1 \leq 0$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\times 1 \geq 8$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |


Individual digital input allocation 1 ．．．d result in an analog output variable at 1 according to the allocated input value．

Example for conversion value（ $\times 1=5$ ）into selection：

| Output | z1 | z2 | ZS | z4 | z5 | 26 | $\underline{7}$ | z8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\because 1=5$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |

If more than one of inputs $\mathrm{d} 1 \ldots \mathrm{~d} 8$ is active，output variable y 1 is set to 0 ．

## Inputs／outputs

## Digital inputs

| $11 . .18$ | Digital inputs for binary value， BCD value or selection 1 out of 8. |
| :--- | :--- |

## Analog input

| K | Analog input for binary value，$B C D$ value or selection 1 out of 8. |
| :--- | :--- |

Digital outputs

| $\mathbf{z 1} \ldots \mathbf{8}$ | Converted binary value， BCD value or value selection． |
| :--- | :--- |

## Analog output <br> $\because 1$

Converted analog value．

## Configuration：

| Configuration | Description | Range | Default |
| :---: | :---: | :---: | :---: |
| Selert． | Mode of analog／binary conversion and binary／analog conversion ．． Āalog／ĒD conversion and BCDDanalog conversion ．．．． conversion！Selection $\overline{1}$ out of $\overline{8}$ | ヨras－＞bir | $\leftarrow$ |
|  |  | ヨrab－BED |  |
|  |  |  |  |

## III-5.3 TRUNC (integer portion (No. 72))



$$
\mathrm{y}_{1}=\operatorname{INT}\left(\mathrm{x}_{l}\right)
$$

The function provides the integer portion (integer) of input variable x 1 without rounding off at output y 1 .

## Example:

$$
\begin{array}{lll}
\times 1=1,7 & \rightarrow & -1=1,0 \\
\times 1=-1,7 & \rightarrow & -1=-1,0
\end{array}
$$

## Inputs/outputs

## Analog input

$x 1$ Input variable to be handled

## Analog output

$\hookrightarrow 1$ Integer portion of $\times 1$
No parameters!

## III-5.4 PULS (analog pulse conversion (No. 73))



$$
\mathrm{n}=\text { Puls } / \mathrm{h} \cdot \frac{\mathrm{x}_{1}-\mathrm{x}_{0}}{\mathrm{x}_{100}-\mathrm{x}_{0}}
$$

| $n$ | $=$ Number of pulses per hour |
| ---: | :--- |
| $x 0$ | $=$ Parameter |
| $x 100$ | $=$ Parameter |
| $x 1$ | $=$ Analog input |

Input variable $x 1$ is converted into a number of pulses per hour. Parameter Puls/h is used for selecting the maximum number of pulses at x 1 ? x 100 . For $\mathrm{x} 1 \mathrm{~B} \times 0$ no pulses are output.

Within range $\mathrm{x0}-\mathrm{x100}$, input value x 1 is converted linearly into pulses per hour.

Fig. 1
Ful:Sh = max. Pulsenumber/h
$x$ 01 $=0 \%$ of Pulse/h
$\times 1$ [10 $=100 \%$ of Pulse/h


The parameter settings result in a straight line between 0 and 3600 pulses /h according to input $\times 1$ The pulse length corresponds to the sampling interval ( $100,200,400$ or 800 ms ) adjusted for this block. The length of switch-off time be tween pulses is not always equal and dependent of the configured sampling interval.

The sampling interval allocation also determines the maximum number of pulses/hour, which can be realized. If higher values than can be output due to the sampling interval are entered in parameter Puls $/ \mathrm{h}$, limiting is to the maximum possible number of pulses.

| Maximum number of pulses: |  |
| :--- | :---: |
| $100 \mathrm{~ms}=18000 \mathrm{pulses} / \mathrm{h}$ |  |
| $200 \mathrm{~ms}=9000 \mathrm{pulses} / \mathrm{h}$ |  |
| $400 \mathrm{~ms}=4500 \mathrm{pulses} / \mathrm{h}$ |  |
| $800 \mathrm{~ms}=2250 \mathrm{pulses} / \mathrm{h}$ |  |

## Inputs/outputs

## Analog input

X1
Input variable to be converted

| Digital output |  |
| :--- | :--- |
| Z1 | Pulse output |

No configuration parameters

## Parameters:

| Parameter | Description | Range | Default |
| :---: | :---: | :---: | :---: |
| $x$ x | Span start (0\%) | -29 999... 999999 | 0 |
| x160 | Span end (100\%) | -29 999... 999999 | 1 |
| Fulerh | Number of output pulses per hour for $\times 1$ ? $\times 100$. | 0... 18000 |  |

Equation for calculating the momentary impulse number of $n$ per hour
$\mathrm{n}=$ momentary impulse number/hour
$n=$ Puls $/ h \cdot \frac{x_{1}-x_{0}}{x_{100}-x_{0}} \quad \begin{array}{lll}x 0 & =\begin{array}{l}\text { Parameter. With analog input } x 1 \leq x 0 \text { no pulses are produced (area start, } \\ \text { creeping flow suppression) }\end{array} \\ & x 100 & =\text { If the analog input is } x 1 \leq x 100 \text { n remains }=\text { constant }=\text { Puls } / h \\ \text { Puls/h } & =\text { Parameter. Pulse number/hour for analog input } x_{1}=x_{100}\end{array}$

Fig. 2

## Example:

$\mathrm{x} 1=3 . . .100 \%$ 气 $0 \ldots 3600 / \mathrm{h}$
$x_{0}=3$
$x_{100}=100$
Puls/h = 3600
sampling period $\leq 400 \mathrm{~ms}$


## III-5.5 COUN (up/down counter (No. 74))


'COUN' is an up/down counter and counts the events at input up or down, which are available at the up or down input for at least the duration of the time group in which the function runs.

| reset | preset | Mode |
| :--- | :--- | :--- |
| $\mathbf{\Sigma}$ | 0 | GO (default) |
| $\mathbf{Q}$ | 1 | Preset |
| 1 | 0 | Reset (first run) |
| 1 | 1 | Reset (first run) |

Fig. 3 Pulse diagram of the up/down counter:

"up, down, carry und borrow" sind in inaktivem Zustand 1.

## Example: max. limit =9; min. limit =0; Preset $=\mathbf{7}$.

An unwired clock input is set to value 1 internally. If both clock inputs go from 0 to 1 signal simultaneously, counting is omitted. If one of clock inputs (up or down) are set from 0 to 1 signal, without the other one being already set to 1 , counting is omitted.

If parameters for the min. or max. limit are changed during operation, the counter can be out of this new range. In or der to prevent faulty functions, the counter must be set to a new, defined output status with 'reset' or 'preset'. The function has a 'memory'. This means: after power-on, it continues operating with counter state and internal states at power-off, provided that the RAM data are still unchanged.

## Function up counter：

At each positive flank $(0 \rightarrow 1)$ at input up，output Count is increased by 1 ，until the max．limit is reached．Carry output carry is set to 0 for the duration of the applied pulse．With the next pulse，output Count returns to the min．value and continues counting with the next pulses．

If the down－input is wired，the up counter is prepared by signal 1 at input down．If not ，counting is not possible．I．e． there must be a 1 signal at input down prior to input up，if the pulse shall be counted．

## Function down counter：

With each positive flank（ $0 \rightarrow 1$ ）at input down，output Count is decreased by 1 ，until the min．limit is reached．Subse－ quently，borrow output borrow is set to 0 for the duration of the applied pulse 0 ．With the next pulse，output Count re－ turns to the max．value and continues counting down with the next pulses．

If the up－input is wired，the down counter is prepared by signal 1 at input up．If not，counting is not possible．
I．e．there must be a 1 signal at input up prior to input down，if the pulse shall be counted．

## Function reset：

A 1 signal at input reset has priority over all other inputs．r゙セジも．resets the count to the min．value．

## Function preset：

A 1 signal at input preset has priority over inputs up and down．preset resets the count to the preset value．
The origin of the preset value is selected with parameter Mode．


With a preset value higher than the max．limit，output Count is set to the max．limit．A preset value smaller than the min．limit is set to the min．limit．A preset value which is not an integer is rounded off．

## Inputs／outputs

| Digital inputs | Input for clock up－pulse count up |
| :--- | :--- |
| LIF | Input for clock down－pulse count down |
| down | Input for the preset mode－output Count．goes to value Reseet． |
| Freset． | Input for the reset mode－output Count．goes to value linir． |
| reset． |  |


| Analog input |  |
| :--- | :--- |
| Freset． | Analog input for external preset value |


| Digital outputs |  |
| :--- | :--- |
| ニrrrs | Carry output（clock－up） |
| borroul | Borrow output（clock－down） |


| Analog output |  |
| :--- | :--- |
| Count． | Count output |

Parameter：

| Parameter | Description | Value range | Default |
| :---: | :---: | :---: | :---: |
| Mone | Source of preset－value | 0 ：Para y0 | $\leftarrow$ |
|  | Source of preset－value | 1：InpPreset |  |
| ＇190 | Preset－value | －29 999．．． 999999 | 0 |
| $1 \mathrm{l} . \mathrm{x} \times$ | Max．limit | －29 999．．． 999999 | 1 |
| Mir | Min．limt | －29 999．．． 999999 | 0 |

## III－5．6 MEAN（mean value formation（No．75））



## General

 x 1 for output at output -1 ．
The interval between the individual samplings（interval）is adjustable with Sample and Irit．

Sample is used to specify the number of＇Unit｀intervals for measurement．

With the sample input wired，the adjusted sample and unit parameter are ineffective．
Only the sample－pulse is used

## Example 1：mean value of the past minute with sampling per second．

S．amFle＝1 and Uriit＝＝eし $\rightarrow$ value sampling per second．
Wal $\mathrm{N}_{\mathrm{O}}=60 \rightarrow$ the past 60 values form the mean value（ 1 minute）．
Example 2：mean value of the past day with sampling per hour．
SamFle＝ 1 and Init．$=$ に $\rightarrow$ value sampling per hour．
Usl $\mathrm{V}_{\mathrm{G}}=24 \rightarrow$ the past 24 values for the mean value（1 day）．
Example 3：mean value of the past day with sampling per quarter of an hour．

Val恪＝ $96 \rightarrow$ the past 96 values form the mean value（ 1 day）．
If the＝amFle input is wired，sampling is triggered by a positive flank at this input．
The adjusted sampling interval is invalid．


## Internal calculation：

The number of input values entered in $\mathbf{y l} \boldsymbol{1} \boldsymbol{0}$ is stored，totalized and divided by the number．

$$
y 1=\frac{\text { value_1+value_2+value_3+...value_n }}{n}
$$

Example：Val惊＝ 5

| 11 | 24 | 58 | 72 | 12 |
| :--- | :--- | :--- | :--- | :--- |

$$
y 1=\frac{11+24+58+72+12}{5}=35,4
$$

ドごこも

The stored values are deleted．

## Example：



| $\mathrm{X}=$ | x | x | x | x | x |
| :---: | :---: | :---: | :---: | :---: | :---: |

Detection that no valid values are available is made．Value 0 is output at output ${ }^{\prime} \exists 1$ ．

Ualトに＝ 5 1st sample after reset：

| $\mathrm{x} 1=$ | 55 | x | x | x | x |
| :---: | :---: | :---: | :---: | :---: | :---: |

Detection that only one valid valid value is available is made．The only valid value $\operatorname{s}-1=55$ is available at output $\unlhd 1$ ．

Ualトロ＝5 2nd sample after reset：

| $\mathrm{x} 1=$ | 44 | 55 | x | x | x |
| :---: | :---: | :---: | :---: | :---: | :---: |

Detection that two valid values are available is made．The mean value of these valid values $\because 1=49,5$ is output at out－ put -1 ．

After all memory cells with a value are occupied（ $\mathrm{Val} \mathrm{Nr}=5$ ），with every sample a new input value is added，the at this time oldest value subtracted and the result divided by $\operatorname{ValNr} .=5$ ．The input values are shifted（like with a shift regis－ ter）．

## Inputs／outputs

| Digital inputs |  |
| :---: | :---: |
| dis．abl | The disable input interrupts sampling |
| reset | The reset input clears the memory and resets the mean value to 0 ． |
| S．ar\％ | A positive flank（ $0 \rightarrow 1$ ）is used for sampling a new value． |


| Analog input | Process value，of which the mean value is formed． |
| :--- | :--- |
| $\times 1$ |  |


| Digital output |  |
| :--- | :--- |
| Fre．ady | Display for an elapsed overall cycle |


| Analog output | Calculated mean value |
| :--- | :--- |
| H®． |  |

## Configuration：

| Parameter | Description |  | Value | Default |
| :---: | :---: | :---: | :---: | :---: |
| Valto | Number of values which can be aquired |  | 1．．． 100 | 100 |
| Urit． | Unit of time for＂巨．arm le＂ | Second ＇Minutes i Hours | 禺耍 | $\leftarrow$ |
| SamFle | Interval time for averaging |  | 0，1．．．999 999 | 1 |

## III-6 Time functions

## III-6.1 LEAD ( differentiator (No. 50))



The differentiator forms the difference quotient according to equation:

| $y_{1}(t)=\frac{T}{T+T_{s}} \cdot\left[y_{1}\left(t-t_{s}\right)+a \cdot\left\{x_{1}(t)-x_{1}\left(t-t_{s}\right)\right\}\right]+y_{0}$ |  | sampling interval time constant gain output offset | x1(t) x1(t-ts) <br> y1(t) y1(t-ts) | instantaneous $\times 1$ previous $\times 1$ instantaneous y1 previous y1 |
| :---: | :---: | :---: | :---: | :---: |

$$
\mathrm{C}=\frac{\mathrm{T}}{\mathrm{~T}+\mathrm{Ts}}<1 \text { ( differentiation constant ) }
$$

The complex transfer function reads: $F_{(p)}=\frac{a \cdot T \cdot p}{T \cdot p+1}$

## Inputs/outputs:

| Digital input |  |
| :--- | :--- |
| reset. $=1$ causes that $y 1=y 0$ and the difference quotient is set to 0. <br> $=0$ starts differentiation automatically. |  |


| Analog input |  |
| :--- | :--- |
| $\times 1$ | Input variable to be differentiated |
| Output | Differentiator output |
| 1 |  |

## Parameters:

| Parameters | Description | Range | Default |
| :---: | :---: | :---: | :---: |
| $\cdots$ | Gain factor | -29 999... 999999 | 1 |
| - $=1 \times 1$ | Output offset | -29 999... 999999 | 0 |
| T | Time constant in s | 0... 199999 | 1 |

## Configuration:

| Configuration | Description |  | Value | Default |
| :---: | :---: | :---: | :---: | :---: |
| Mode | Differentiator operation | Differentiating all changes | 0 | 0 |
|  |  | Differentiating only positive changes - dx/dt $\geq 0$ | 1 |  |
|  |  | Differentiating only negative changes ${ }^{\text {a }}$ dx/dt $<0$ | 2 |  |

## Step response:

After a step change of input variable $x 1$ by $\{x=x t-x(t-t s)$, the output changes to maximum value $y_{\text {max }}$.
$y_{\max }=C \cdot a \cdot \Delta x+y 0$
and decays to 0 according to function
$y(n . t s)=C_{n} \cdot \Delta . x+y 0=y \max \cdot C^{(n-1)}$

Thereby, n is the number of calculation cycles ts after the input step change. Number $n$ of required calculation cycles ts until output variable decaying to $\mathrm{y}\left(\mathrm{n}^{*} \mathrm{Ts}\right)$ is
$n=\frac{y \max }{\lg C}+1$
Surface area $A$ under the decaying function is $A=y_{\max } \cdot(T+t s)$

## Ramp response:

After ramp starting, output variable y runs towards the final value of differentiation quotient
$y_{\text {max }}=m \cdot a \cdot T$
according to function $\mathrm{y}(\mathrm{n} \cdot \mathrm{ts})=\mathrm{m} \cdot \mathrm{a} \cdot \mathrm{T} \cdot\left(1-\mathrm{C}^{\mathrm{n}}\right)$
Thereby, $\mathrm{m}=\mathrm{m}=\mathrm{dx} / \mathrm{dt}$ is the gradient factor of the input function. Relative error F after n calculating cycles Ts referred to the final value is calculated as follows:
$F=C^{n}$ and the number of required calculating cycles, according to which function $\mathrm{y}(\mathrm{n} \cdot \mathrm{ts})$ approaches final value
$y=y_{\max }$ to error $F$ is $n=\frac{\lg F}{2 \cdot \lg C}$

Fig. 4



Fig. 5


## III－6．2 INTE（integrator（No．51））



The integrator forms the integral according to equation：

| $y_{1}(t)=y_{1}\left(t-t_{s}\right)+\frac{t_{s}}{T} \cdot\left[x_{1}(t)+x_{0}\right]$ | ts | sampling interval | x1（t） | instantaneous |
| :---: | :---: | :---: | :---: | :---: |
|  | T | Integration constant | y1（t） | y 1 after $\mathrm{t}=\mathrm{n}^{*} \mathrm{t}$ |
|  | n | Number of calculation cycles | y1（t－ts） | previous y1 |
|  | x0 | Input offset |  |  |

The complex transfer function is：
$F(p)=\frac{1}{T \cdot p}$
Unused control inputs are interpreted as logic＂ 0 ＂．With simultaneous input of several control commands：
reset $=1$ has friority over freset and stop
freset $=1$ friority over stor
 $\mathrm{H} . \mathrm{x}$ 人，the integrator is stopped automatically and the relevant control output min or max is set to logic 1 ．Limit value


## Inputs／outputs

| Digital inputs |  |
| :---: | :---: |
| 三t．in | $=1$ The integrator is stopped for the duration of the stop command．Output y1 does not change． |
| トごご， | $=1$ The integration result is adjusted to lower limit（Min）．After cancelation of r－ここご．， integration starts at lower limiting． |
| Fドごこも | $=1$ The integration result is set either to a preset value y0（ Mode＝0）or to a preset variable Freset．（Mode＝1）．After cancelation of the Fr゙eset．command，integration starts with the actually effective preset value． |


| Analog inputs |  |
| :--- | :--- |
| $\times 11$ | Input variable to be integrated |
| Pr־ここ. | External preset value |


| Digital outputs |  |
| :--- | :--- |
| Mi. X | $=1$ exceeded with max. limiting |
| Min | $=1$ exceeded with min. limiting |


| Analog output | Integrator output after elapse of integration $\mathrm{t}=\mathrm{n} \cdot \mathrm{ts}$ |
| :--- | :--- |
| y |  |

Parameters:


## Ramp function:

With constant input $\times 1+\times 0$, the applicable formulas are
$y 1(t)=y(t 0)+n \cdot \frac{t s}{T} \cdot(x 1+x 0)$
$\mathrm{t}=\mathrm{n} \cdot \mathrm{ts}$
t is the time required by the integrator for changing output y 1 linearly by value $\mathrm{x} 1+\mathrm{x} 0$ after integration start.

## Ramp response:

Fig. 6


The function has a 'memory'. This means: after power-on, it continues operating with values $\mathrm{y} 1, \mathrm{z} 1$ and z 2 , which existed at power-on, provided that the RAM data are still available.

Example: Which is the value of output variable y after $\mathrm{t}=20 \mathrm{~s}$ with a time constant of 100 s, if a constant of $\mathrm{x} 1=10$ Volt is preset. Sampling interval ts is 100 ms .
$\mathrm{n}=\frac{\mathrm{t}}{\mathrm{t}_{\mathrm{s}}} \quad \mathrm{n}=\frac{20 \mathrm{~s}}{0,1 \mathrm{~s}}=200 \mathrm{~s}$
$y=0+200 \cdot \frac{0,1}{100} \cdot 10=2$ after 20 s
This results in a gradient of $2 \mathrm{~V} / 20$ s or $0.1 \mathrm{Volt} / 1 \mathrm{~s}$.

## III-6.3 LAG1 ( filter (No. 52))



Dependent of control input reset, input variable $x 1$ is passed on to output y1 with delay (reset= 0 ) or without delay (re set = 1). Delay is according to a 1st order e-function ( 1st order low pass ) with time constant T(s). The output variable for reset= 0 is calculated according to the following equation:

$$
\begin{array}{|l|lll}
\hline y_{1}(t)=\frac{T}{T+t_{s}} \cdot y_{1}\left(t-t_{s}\right)+\frac{t_{s}}{T+t_{s}} \cdot x_{1}(t) & \begin{array}{ll}
\text { ts } & \text { sampling interval }(t) \\
T & \text { instantaneous } x 1 \\
n & \text { number of calculation cycles }
\end{array} & \begin{array}{l}
\mathrm{x} 1(\mathrm{t}-\mathrm{ts}) \\
\mathrm{y} 1(\mathrm{t} \text { - } \mathrm{s})
\end{array} & \text { previous } \mathrm{y} 1
\end{array}
$$

The complex transfer function is:

$$
F(p)=\frac{1}{1+p \cdot t}
$$

## Inputs/outputs:

| Digital input |  |
| :--- | :--- |
| reset. | $=0$ means that input signal $x 1$ is output without delay at output $y 1$. <br> $=1$ means that input signal $x 1$ is output at output $y$ 1 according to the calculated e-function. |


| Analog input |  |
| :--- | :--- |
| $\times 1$ | Input variable to be calculated |
| Analog output |  |
| $\dashv 1$ | Delayed output variable |

Parameter:

| Parameter | Description | Range | Default |
| :--- | :--- | :--- | :--- |
| T | Time constant in s | $0 \ldots 199999$ | 1 |

No configuration parameters!

## III－6．4 DELA1（ delay time（No．53））



If the clock input is not wired，the function calculates $\mathrm{y} 1(\mathrm{t})=\mathrm{x} 1(\mathrm{t}-\mathrm{n} \bullet \mathrm{ts})$ ．（ ts＝sampling interval，Delay＝delay factor n）
Unless clock input clock is wired，the following is applicable：input variable $<1$ is output with a delay by $n$ times the amount of adjusted sampling interval ts（ phase shift by $n$－ts）．The effective delay time corresponds to integer multiples of the selec－ ted time group（sampling interval ts $100 / 200 / 400 / 800 \mathrm{~ms}$ ）．The delay time range covers $n=0$ to 255 （ $0 . \ldots .255 \cdot \mathrm{ts}$ ）

With clock input clock wired，DELA1 acts like a shift register with a length of max．255＝Parameter

Switching on is only with a positive flank（ transition from $0 \rightarrow 1$ ）at the clock input plus the adjusted delay factor（pa－


## Example：

With $\begin{aligned} & \text { ale } \\ & l \\ & \text { E＇ヨ }\end{aligned}=4$ change－over at output y is only after 4 flank changes from $0 \rightarrow 1$ at input clock
Fr－eset：The output provides the value applied to Preset．After（ $\mathrm{n}+1$ ）positive flanks at clock or（ $\mathrm{n}+1$ ）sampling cycles $\mathrm{t}_{\mathrm{s}}$（if clock isn＇t wired），the first input value x 1 appears at y 1 ．
reset．The output provides value 0 ．After a positive flank at clock，value zero still is provided for the sampling interval ts．
The function has a＇memory＇．This means：after power－on，it continues operating with values $y 1, z 1$ and $z 2$ ，which exis－ ted at power－on，provided that the RAM data are still unchanged．

Inputs／outputs

| Digital inputs | $=0->1$ clock for delaying |
| :--- | :--- |
| Clock | $=1$ The preset value is taken to the output |
| Freset． | $=1$ Output＇el is set to zero |
| reset． |  |
| Analog inputs | Input variable to be delayed |
| X1 | Value output without delay by Freset．$=1$ |
| Preset． |  |

With several simultaneous control commands：
reこet＝ 1 has priority over preset and stop
Fゲこここも．＝ 1 has priority over stop

| Analog output | Delayed output variable |
| :--- | :--- |
|  |  |

Parameter：

| Parameter | Description | Range | Default |
| :--- | :--- | :--- | :--- |
| Del．ヨ＇コ | Delay factor n | $0 / 1 / \ldots . .255$ | 0 |

## III-6.5 DELA2 ( delay time (No. 54) )



The function provides calculation $\quad \mathrm{y} 1(\mathrm{t})=\mathrm{x} 1(\mathrm{t}-\mathrm{Td})$
Input variable x 1 is output at y1 with delay by time Td. The accuracy Td is dependent of the time group ( sampling in terval ts) , to which the function is assigned.

Example:
$\mathrm{Td}=0,7 \mathrm{~s}$ with assignment to time group 100 ms means $\mathrm{Td}=0,7 \mathrm{~s}$
to time group 200 ms means $\mathrm{Td}=0,8 \mathrm{~s}$
to time group 400 ms means $\mathrm{Td}=0,8 \mathrm{~s}$
to time group 800 ms means $\mathrm{Td}=0,8 \mathrm{~s}$
The possible delay time is dependent of the configured time slot (sampling interval ts).

$$
\begin{aligned}
& \text { Td } \max =25,5 \mathrm{~s} \text { with } \mathrm{ts}=100 \mathrm{~ms} \\
& \text { Td } \max =51,0 \mathrm{~s} \text { with } \mathrm{ts}=200 \mathrm{~ms} \\
& \text { Td } \max =102,0 \mathrm{~s} \text { with ts }=400 \mathrm{~ms} \\
& \text { Td } \max =204,0 \mathrm{~s} \text { with ts }=800 \mathrm{~ms}
\end{aligned}
$$

## Inputs/outputs

## Digital input

## Froset

$=1$ The preset value is taken to the output
reset.
$=1$ Output y1 is set to zero
With several simultaneous control commands:
reset = 1 has priority over Fr゙eset and $\boldsymbol{\text { Ftom }}$
Fr゙eset. $=1$ priority over stom

| Analog input |  |
| :--- | :--- |
| $\times 1$ | Input variable to be delayed |
| Frreset. | Value output with delay by preset=1 |
| Analog output |  |
| 1 | Delayed output variable |

## Parameters:

| Parameter | Description | Range | Default |
| :--- | :--- | :--- | :--- |
| Ti. | Delay in s | $-29999 . . . .199999$ | 0 |

## III-6.6 FILT ( filter with tolerance band (No. 55) )



The complex transfer function of the filter within a tolerance band around the last output value ( $\mid x 1-y \| \ll=\delta)$ is:
$F(p)=\frac{1}{1+p \cdot T}$
With a difference higher than Diffor reset. = 1 between input $x 1$ and output y2, the filter stage is switched off and the output follows the input directly.

Fig. 7


With a difference of input $x 1$ and output $y 1$ smaller than $\mathbf{D i f f}$ andrest. $=0$, the output follows an e-function with time constant T . The output variable is calculated according to the following equation:

$y 1(t)=\frac{T}{T+t s} \cdot y 1(t-t s)+\frac{t s}{T+t s} \cdot x 1(t) \quad$| ts | sampling interval | $x(t)$ |
| :--- | :--- | :--- |
| $T$ | time constant | $x 1(t-t s)$ |

Inputs/outputs

| Digital input |  |  |
| :--- | :--- | :--- |
| reset. | $=0\|x 1-y 1\|<$ Diff | delay effective |
|  | $=0\|x 1-y 1\|>$ Diff | delay switched off |
| reset. | $=1\|x 1-y 1\| \ll=$ Diff | delay switched off |
|  | $=1\|x 1-y 1\|>$ Diff | delay switched off |

## Analog input

| $\times 1$ | Input variable to be delayed |
| :--- | :--- |


| Analog output | Delayed output variable |
| :--- | :--- |
| 1 |  |

## Parameters:

| Parameter | Description | Range | Default |
| :---: | :--- | ---: | ---: |
| T | Time constant in s | $0 \ldots 199999$ | 1 |
| Diff | Tolerance band $\vartheta$ | $0 \ldots 99999$ | 1 |

## III－6．7 TIMER（ timer（No．67））



The function timer can only be used with real－time clock（9407－9xx－2xxx）．Output $\boldsymbol{z}_{1}$ is switched on at absolute time TS and switched off again after TE．This switching operation can be unique or cyclical（parameter adjustment）．Out－

When the time defined with TS．H and TSMi has elapsed，the 1st switching operation occurs on the following day．With TS． $\mathrm{F}=0$ and $\mathrm{T} \mathbf{S}$＜actual day，the first switching operation occurs in the following month．With TS．

## Inputs／outputs

| Digital input |  |
| :---: | :---: |
| －dis．bl | $=0$ output z1 active．Becomes 1 when the time was reached． |
| －disabl | $=1$ output z1 switched off．The output behaves like＂time not yet reached＂． |


| Digital output |  |
| :--- | :--- |
| $z 1$ | z 1 is logic 1 between the start and end time． |

## Analog output

Wジに－D
indicates the actual weekday（ $0 . . .6=$ Su．．．Sa）

## Parameters：

| Parameter | Description | Range | Default |
| :---: | :---: | :---: | :---: |
| TS．Mor | Switch－on time month | 0．．． 12 | 0 |
| TS．D | Switch－on time day | 0．．． 31 | 0 |
| TS．H | Switch－on time hour | 0．．． 23 | 0 |
| TS．Mi | Switch－on time minute | 0．．． 59 | 0 |
| TE．D | Time duration days | $0 . .255$ | 0 |
| TE．H | Time duration hours | 0．．． 23 | 0 |
| TE．Mi | Time duration minutes | 0．．． 29 | 0 |

## Configuration：

| Configuration | Description | Value | Default |
| :---: | :---: | :---: | :---: |
| Ftrac 1 |  |  | 0 |
| F－ine 1 | 口rice function runs once |  |  |
| Funce | diald function runs daily | 0 | 0 |
|  | Mo．－Fr－Function runs fromMonday to Friday |  |  |
|  | riour Sofuntion runs from Monday to Saturday |  |  |
|  | W上ekly function runs weekly |  |  |

[^1]
## III－6．8 TIME2（ timer（No．70））



The function timer2 can only be used with real－time clock．With a positive flank at $\boldsymbol{\varepsilon}$ t．ar•t．TIMER2 is started and output $\boldsymbol{\Sigma} 1$ is switched to 1 after elapse of time Tら and reset to 0 after elapse of time TE．

Example：TS．D＝2，TS．H＝1，TS． $\mathrm{Hi}=30 \mathrm{TE} . \mathrm{D}=0, \mathrm{TE} . \mathrm{H}=2$ ，TE． $\mathrm{Hi}=2$
After the change from 0 to 1 at input $\boldsymbol{s}$ t． $\mathrm{rr}^{-}$．，output $\mathbf{\Sigma} 1$ is set to 1 after 2 days， 1 hour and 30 seconds and reset to 0 after 2 hours and 2 seconds．Cyclic switching operations can be realized by feed－back of the eriol output to the st．art．input．

Inputs／outputs

| Digital inputs |  |
| :--- | :--- |
| －dis．al | $=1$ suppresses the switching operation． |
| reset． | $=1$ finishes an instantaneously running switching operation immediately． |
| start． | $=1$ switch－on duration start |


| Digital outputs |  |
| :--- | :--- |
| Z1 | $=1$ switching operation running |
| erng | $=1$ switching operation end |


| Analog output |  |
| :--- | :--- |
| Wごに -D | indicates the actual weekday（ $0 \ldots 6 \wedge$ Su．．．．Sa） |

## Parameters：

| Parameter | Description | Range | Default |
| :--- | :--- | :---: | :---: |
| TS．D | Switch－on delay day | $0 \ldots . .255$ | 0 |
| TS．H | Switch－on delay hour | $0 \ldots 23$ | 0 |
| TS．Mi | Switch－on delay minute | $0 \ldots 59$ | 0 |
| TE．D | Switch－on duration days | $0 \ldots 255$ | 0 |
| TE．H | Switch－on duration hours | $0 \ldots 23$ | 0 |
| TE．Mi | Switch－on duration minutes | $0 \ldots 29$ | 0 |

＊1）with the engineering tool broken rational numbers can be used；however only the integral portion is taken over！

## III-7 Selecting and storage

## III-7.1 EXTR ( extreme value selection (No. 30))



Analog inputs $\times 1, ~ \times 2$ and $\times \bar{S}$ are sorted according to their instantaneous values and provided at outputs $\mathrm{M} \cdot \mathrm{x}$, Mid and Hin . Input value output is at $\mathrm{M} \times \mathrm{x}$ for the highest one, at Mid for the medium one and at Min for the smallest one.
The number of the input with the highest value is output at $\mathrm{M}=\times \mathrm{Ho}$.
The number of the input with the medium value is provided at output Mid
The number of the input with the smallest value is provided at output lininio.
With equality, the distribution is at random. Inputs are not included into the extreme value selection, if: -the input is not wired
-or the input value is higher than 1,5 $10^{37}$ or smaller than $-1,5 \cdot 10^{37}$.

| Number of failed inputs | $1.10 \times$ | Mid | Min | $1 \mathrm{l} .3 \times 1$. | Midto | Minto |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | X | X | X | number of $x$ | number of $x$ | number of $x$ |
| 1 | X |  | X | number of $x$ |  | number of $x$ |
| 2 | the valid value |  |  | number of the valid value |  |  |
| 3 | 1,5 | 1,5 | 1,5 | 0 | 0 | 0 |

## Inputs/outputs

## Analog inputs

| $\times 1!\cdot: 5$ | Input variables to be compared |
| :--- | :--- |


| Analog outputs |  |
| :---: | :---: |
| Max | Maximum instantaneous input value |
| Mid | Mean instantaneous input value |
| Min | Minimum instantaneous input value |
| M ExW Ho | Number of maximum instantaneous input value ( $1=\times 1,2=\times 2,3=\times 3)$ |
| Mid No | Number of mean instantaneous input value $\quad(1=x 1,2=\times 2,3=\times 3)$ |
| Minito | Number of minimum instantaneous input value ( $1=x 1,2=x 2,3=x 3)$ |

## III-7.2 PEAK ( peak value memory (No. 31))



Maximum input value $\mathrm{x}_{\text {max }}$ and minimum input value $\mathrm{x}_{\text {min }}$ are determined, stored and output at $\mathrm{M} \cdot \mathrm{x}$ and Nin . With the stop input set to 1 , the extreme values determined last remain unchanged.
If thereset. input is set to 1 , the extreme value memory and any applied $\boldsymbol{s t a r}$ command are cancelled. ( $x_{\max }$ and $x_{\text {min }}$ are set to the instantaneous $x 1$ value and follow input x 1 , until thereset. input returns to 0 .)

Unused inputs are interpreted as 0 or logic 0.
The function has a 'memory'. This means: after power-on, it continues operating with the Min- and Max values which existed at power-off, provided that the RAM data are still unchanged.

## No parameters!

## Inputs/outputs

| Digital inputs |  |
| :--- | :--- |
| Stor | With the stop input set to 1, instantaneous values Max and Min are unchanged. |
| reset. | The reset input deletes the Min and 1 M x values. |

## Analog inputs

| $\times 1$ | Process value, the min and max values of which are output. |
| :--- | :--- |


| Analog outputs |
| :--- |
| Mヨ |
| Min | Maximum value

## III-7.3 TRST ( hold amplifier (No. 32))



With control input hold set to 1 , instantaneous input value $x 1$ is stored and output at $y 1$. With control input hold set to 0 , output y1 follows input value $x 1$.

The function has a 'memory'. This means: after power-on, it continues operating with the $y 1$ value which existed at power-off, provided that the RAM data are still unchanged.

## No parameters!

## Inputs/outputs

| Digital input | Storage signal for the |
| :--- | :--- |
| $\times 1$ | value |
| Fold |  |


| Analog input | Process value which can be output stored. |
| :--- | :--- |
| $\times 1$ |  |


| Analog output | Function output |
| :--- | :--- |
| 1 |  |

## III-7.4 SELC ( Constant selection (No. 33))



Dependent of control signal d1, the four preset parameters of group 1 or of group 2 are output.

## Inputs/outputs

## Digital input

-1
Selecting the constant group (0 = group 1; 1= group 2)

| Analog outputs |  |  |
| :---: | :---: | :---: |
|  | $\mathrm{d} 1=0 \wedge$ group 1 | -1 $=1 \wedge$ group 2 |
| $\cdots 1$ | 01.1 | 0.2 .1 |
| $\because 2$ | 0.1 .2 | 0.2 .2 |
| 4 | 01.3 | 02.3 |
| - 4 | 0.1 .4 | 02.4 |

Parameters:

| Parameter | Description | Range | Default |
| :---: | :---: | :---: | :---: |
| C1.1 | 1. Constant of group 1, output at y1 with $\mathrm{d} 1=0$. | -29 999... 999999 | 0 |
| C1.2 | 2. Constant of group 1, output at y 2 with $-1=0$. | -29 999... 999999 | 0 |
| C1.3 | 3. Constant of group 1, output at y 3 with $\mathrm{d} 1=0$. | -29 999... 999999 | 0 |
| C1.4 | 4. Constant of group 1, output at y 4 with $-1=0$. | -29 999... 999999 | 0 |
| C2.1 | 1. Constant of group 2, output at y1 with d1 $=1$. | -29 999... 999999 | 1 |
| C2.2 | 2. Constant of group 2, output at y 2 with $\mathrm{d} 1=1$. | -29 999... 999999 | 1 |
| C2.3 | 3. Constant of group 2, output at y 3 with $\mathrm{d} 1=1$. | -29 999... 999999 | 1 |
| C2.4 | 4. Constant of group 2, output at y 4 with $\mathrm{ol}^{1}=1$. | -29 999... 999999 | 1 |

## III-7.5 SELD (selection of digital variables - function no. 06)



Selection of one of the 4 digital inputs is either by an analog "Select" signal or by the two digital control signals seld1, seld2. If analog control signal Select is connected, selecting is done using this control signal. If the input is not connec ted, selection is by means of the two digital control inputs seld1, seld2.
This function block is cascadable. The select input can be linked with the $\boldsymbol{\sigma}$ = output of another SELD block into a choice of 8 digital variables.

## Inputs/outputs

| Digital inputs |  |
| :---: | :---: |
| $\square 1$ | Input, is output at $z 1$, when seld1 $=0$ and seld2=0 |
| -2 | Input, is output at $z 1$, when seld $1=0$ and seld2=1 |
| dS | Input, is output at $z 1$, when seld $1=1$ and seld2=0 |
| - 4 | Input, is output at $z 1$, when seld1=1 and seld2=1 |
| seld | 1st control signal for variable selection (least significant bit) |
| Eeld2 | 2nd control signal for variable selection (most significant bit) |

## Analog inputs



## Digital outputs

| z1 | $\mathrm{d} 1, \mathrm{~d} 2, \mathrm{~d} 3$. or d4 <br> According to the input value of Select (or to values seld1, seld2) the relevant input variable is output. |
| :--- | :--- |

## Analog outputs

C.EEC. $\quad$ Cascade output $=$ Select -3.0

## III-7.6 SELP ( parameter selection (No. 34))



Dependent of control signals d1 and d2, either one of the three preset parameters $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3$ or input variable x 1 is connected with output y1. Unused inputs are interpreted as 0 or logic 0.

## Inputs/outputs

| Digital inputs |  |
| :--- | :--- |
| -11 | 1st digital input for parameter selection |
| -I | 2nd digital input for parameter selection |


| Analog input |  |
| :--- | :--- |
| $\times 1$ | Input is output at $₫ 1$, when $\mathrm{d} 1=1$ and d2 $=1$ |


| Analog outputs |  |  |
| :---: | :---: | :---: |
|  | d1 | d2 |
| $91=$ C1 | 0 | 0 |
| $\cdots 1=\mathrm{C}$ | 0 | 1 |
| $\because 1=\mathrm{E}$ | 1 | 0 |
| $\cdots 1=\times 1$ | 1 | 1 |

## Parameters:

| Parameter | Description | Range | Default |
| :---: | :---: | :---: | :---: |
| C1 | 1 st constant, output at y1 with $1=0$ and $-2=0$ | -29 999... 999999 | 0 |
| 02 | 2nd constant, output at y1 with $1=0$ and $-2=1$. | -29 999.... 999999 | 0 |
| CS | 3 rd constant, output at y 1 with $1=1$ and $2=0$. | -29 999... 999999 | 0 |

## III-7.7 SELV1 ( variable selection (No. 35))



Dependent of control signals d 1 and d 2 , one of four inputs $\mathrm{x} 1 \ldots \mathrm{x} 4$ is connected with output y 1 .
Unused inputs are interpreted as 0 or logic 0.

## Inputs/outputs

| Digital inputs |
| :--- |
| D1 |
| 1s |


| Analog inputs |  |
| :--- | :--- |
| x 1 | Input is output at y 1, when $\mathrm{d} 1=0$ and $\mathrm{d} 2=0$ |
| x 2 | Input is output at y 1, when $\mathrm{d} 1=0$ and $\mathrm{d} 2=1$ |
| xS | Input is output at y 1, when $\mathrm{d} 1=1$ and $\mathrm{d} 2=0$ |
| $\mathrm{x4}$ | Input is output at y 1, when $\mathrm{d} 1=1$ and $\mathrm{d} 2=1$ |


| Analog outputs |  |  |
| :---: | :---: | :---: |
|  | 01 | 42 |
| $\cdots 1=\times 1$ | 0 | 0 |
| $\cdots 1=\times 2$ | 0 | 1 |
| $\because 1=\times 3$ |  | 0 |
| $\because 1=x 4$ | 1 | 1 |

## No parameters!

## III-7.8 SOUT ( Selection of output (No. 36))



Dependent of control signals d1 and d2,, input variable x1 is connected to one of outputs y1, y2, y3 or y4. Unused inputs are interpreted as 0 or logic 0 .

## Inputs/outputs

| Digital inputs |  |
| :--- | :--- |
| -11 | 1st digital input for output selection |
| -2 | 2nd digital input for output selection |


| Analog input | Input is output at $\Xi 1$, when $1=0$ and $12=0$ |
| :--- | :--- |
| $\times 1$ |  |


| Analog outputs |  |  |
| :---: | :---: | :---: |
|  | 01 | 02 |
| 'ヨ1 $=\times 1$ | 0 | 0 |
| ' $2=\times 1$ | 0 | 1 |
| '3 = x1 | 1 | 0 |
| $\cdots 4=\times 1$ | 1 | 1 |

## No parameters!

## III－7．9 REZEPT（ recipe management（No．37））



The function has 5 groups（recipe blocks）each with 4 memory locations．The recipes can be written via parameter set－ ting and analog inputs．The function parameters are stored in EEPROM with back－up．
Selection which recipe block is output at y1 ．．．y4 is determined by the value applied to input Set．ino．
In mode STORE（三t－ローロ＝1），the values applied to x1．．．x4 are written into the memory addresses of the recipe block selected with input Settio．
During manual mode（m．arlinal＝1），the inputs are directly connected with the outputs．

If more than 5 recipes are required，a corresponding number of recipe functions are simply cascaded．

Values of the used analog inputs are stored as parameter values when detecting a positive edge at the stor－e－input．This input should be activated only with relevant changes of the input values．Too frequent storing operations may lead to the destruction of the EEPROM！（ $\rightarrow$ page 311）

Example for 15 recipes


With cascading，the values for the overall recipe are available at outputs y1．．．y4 of the last stage．

## Inputs／outputs

## Digital inputs

| シャロッシ dynamic | This input reacts only on a positive flank，i．e．on a change from 0 to 1 ．With this flank，input values $\times 1 \ldots \times 4$ are stored in the recipe block selected with Set． Ho ．The values are stored in RAM and in EEPROM． <br> With $\boldsymbol{s}$ torres $=0$ or permanent 1 ，storage is omitted． |
| :---: | :---: |
|  | manual $=0$ ：automatic mode：recipe function active <br> manual $=1$ ：manual mode：the values of inputs $\times 1 \ldots \times 4$ are applied to $y 1 \ldots y 4$ directly． |

## Analog inputs

| x1．．．84 | In mode STORE（ group selected with Set．No． <br> The inputs are connected with the outputs directly in manual mode（manual $=1$ ）and also when the $\mathbf{S o t}$ input is beyond range $1 . . .5$ ． |
| :---: | :---: |
| SutMos | Selecting a recipe block： <br> The value of Set．No determines，which one of the 5 recipe blocks is selected．Selection is valid for read－ <br>  Setto out of range 1．．．5，the inputs are connected directly with the outputs（independent of the status at the $A / M$ input manual）．This is required for cascading． |


| Analog outputs |  |
| :---: | :---: |
| ＇ヨ1．－．${ }^{\prime \prime} 4$ | The values at y（i）correspond either to the recipe block selected with $\mathbf{S o t}$ ． 1 or or to inputs $\mathrm{x}(\mathrm{i})$ in manual mode（store＝1）． |
| C．gec |  |

## Parameters：

Via interface， 20 parameters（ 5 recipe blocks each with 4 values）can be preset：

| Parameter | Description |  | Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| Set．1．1 | Recipe block 1 | Parameter 1 for recipe 1 | －29 999．．． 999999 | 0 |
| らet1．2 |  | Parameter 2 for recipe 1 | －29 999．．． 999999 | 0 |
| らこち．1．3 |  | Parameter 3 for recipe 1 | －29 999．．． 999999 | 0 |
| らこち1．4 |  | Parameter 4 for recipe 1 | －29 999．．． 999999 | 0 |
| Set．2．1 | Recipe block 2 | Parameter 1 for recipe 2 | －29 999．．． 999999 | 0 |
| Set．2．2 |  | Parameter 2 for recipe 2 | －29 999．．． 999999 | 0 |
| Set．2．31 |  | Parameter 3 for recipe 2 | －29 999．．． 999999 | 0 |
| Set2．4 |  | Parameter 4 for recipe 2 | －29 999．．． 999999 | 0 |
| Sets． 1 | Recipe block 3 | Parameter 1 for recipe 3 | －29 999．．． 999999 | 0 |
| Эこせ．．2 |  | Parameter 2 for recipe 3 | －29999．．． 999999 | 0 |
| S®t．．S |  | Parameter 3 for recipe 3 | －29 999．．． 999999 | 0 |
| ЭこtS． 4 |  | Parameter 4 for recipe 3 | －29 999．．． 999999 | 0 |
| Set．4．1 | Recipe block 4 | Parameter 1 for recipe 4 | －29 999．．． 999999 | 0 |
| S®t．4．2 |  | Parameter 2 for recipe 4 | －29 999．．． 999999 | 0 |
| S®t．4．3 |  | Parameter 3 for recipe 4 | －29 999．．． 999999 | 0 |
| 5®t4．4 |  | Parameter 4 for recipe 4 | －29 999．．． 999999 | 0 |

III-7.10 20F3 ( 2-out-of-3 selection with mean value formation (No. 38))


Function 20F3 forms the arithmetic mean value of input variables $\times 1, \times 2$ and $\times 3$.
The difference of $\times 1, \times 2$ and $\times 3$ is formed and compared with parameter $D i f f$. Inputs the value of which exceeds
 AINP), faulty inputs are not taken into account either for mean value formation. $\operatorname{err} \stackrel{r}{ }=1$ indicates that 1 input failed and was not used for mean value formation. If at least 2 inputs do not participate in mean value formation, output erre is set to 1 . With input off set to 1 or if output err2 $=1$ the $\times 1$ value is output at 91 .

With more than 3 input variables, function 20F3 can be cascaded.
Output CE E indicates the number of values used for mean value formation. This is important with 20 F 3 function cascading.
 used, the relevant $\mathrm{x}-\mathrm{m}$ 니 lt . must be set to 0 .

Example of cascading

Fig. 8 Cascading example


In this example，CONST output y $16=0$ is set．
The following formulas are calculated：
The left 20F3：$\frac{x 1 \cdot 1+x 2 \cdot 1+x 3 \cdot 0}{2}=y 1$ and the right 20F3：$\quad \frac{x 1 \cdot 1+x 2 \cdot 1+x 3 \cdot 2}{4}=y 1$

## Inputs／outputs

| Digital inputs |  |
| :---: | :---: |
| faill | Error message for input $\times 1$ ．With $\ddagger$ ．$\ddagger$ i $11=1$ ，input x 1 is not taken into account for mean value formation． |
| f．ail2 | Error message for input $\times 2$ ．With $\mp$ a $12=1$ ，input $\overline{2}$ is not taken into account for mean value formation． |
| fails | Error message for input $\times \mathbf{3}$ ．With $\mathbf{f} \cdot \mathrm{i} 1 \mathbf{1} \mathbf{S}=1$ ，input $\times \mathbf{S}$ is not taken into account for mean value formation． |
| －ff | Function switch－off：with $\mathbf{- f} \mathbf{f} \boldsymbol{f}=1$ ，input $\times 1$ is output at $\lrcorner 1$ |


| Analog inputs |  |
| :---: | :---: |
| $\times 1$ | Measurement input 1 |
| ＜1 ¢ ¢－ | Factor input，pertaining to measurement input 1 ．Determination is made of how many measurement inputs the $\times 1$ consists（required with function block cascading or input ${ }_{x 1}$ not connected）． <br> Non－connected input $\times 1$ moll t t is evaluated as value 1 ． |
| $\times 2$ | Measuring input 2 |
| ＜2mitt | Factor input，pertains to measurement input 2．Determination is made of how many measurement inputs the $\times 2$ consists（required with function block cascading or input $\times 2$ not connected ）． <br> Non－connected input $\times 2$ milll t is evaluated as value 1 ． |
| $\times 3$ | Measurement input 3 |
| 人S「心1t | Factor input，pertains to measurement input 3 ．Determination is made of how many measurement inputs $\times \mathbf{S}$ con－ sists（required with function block cascading or input $\%$ ． 3 not connected）． Non－connected input $\%$ Smill $\mathbf{t}$ t is evaluated as value 1 ． |


| Digital outputs |  |
| :---: | :---: |
| Er「1 |  value formation． |
| erre | Error message： $\operatorname{err} \mathbf{r}=1$ indicates that mean value formation is omitted．Either several inputs $\mathrm{f} \boldsymbol{\mathrm { f }}$ ：illor differ－ ence $>\mathrm{Di} \mathrm{f} \mathrm{f} \mathrm{f}$ ）are disturbed or function was switched off by inputoff． |

## Analog outputs

$\rightrightarrows 1$ arithmetic mean value or switching to $\times 1$ occurred（ $-\boldsymbol{f} f=1$ or several inputs defective）．
C－ES：Factor：number of the values used for mean value formation．


## Parameter

| Parameter | Description | Range | Default |
| :---: | :--- | :---: | :---: |
| Diff | Limit value for comparison of differences between inputs <br> $\times 1 \ldots$ K．for determination of faulty inputs． | $0 \ldots . .999999$ | 1 |

## No configuration parameters！

## III－7．11 SELV2（ cascadable selection of variables（No．39））



Dependent of input Select，，one of the four inputs $\times 1 \ldots \times 4$ is connected with output y1．Unused inputs are interpreted as

 SELV1，the corresponding variable is output at $Y$＇ 1 of the 2nd SELV2．


| SELV1 | $y$ 1output 2nd SELV1 |
| :--- | :--- |
| Select $<1,5$ | $x 1$ of 1st SELV1 |
| $1,5<$ Select $<2,5$ | $x 2$ of 1st SELV1 |
| $2,5<$ Select $<3,5$ | $x 3$ of 1st SELV1 |
| $3,5<$ Select $<4,5$ | $x 4$ of 1st SELV1 |
| $4,5<$ Select $<5,5$ | $x 2$ of 2nd SELV1 |
| $5,5<$ Select $<6,5$ | $x 3$ of 2nd SELV1 |
| $<6,5$ | $x 4$ of 2nd SELV1 |

Inputs／outputs

| Analog inputs |  |
| :---: | :---: |
| $\times 1$ | Input is output at y1 with 5 ¢lect．＜1，5． |
| $\times 2$ | Input is output at y1 with 1，5＜5®lect＜2，5． |
| $\times 3$ | Input is output at y 1 with 2，5＜5心lect．$<3,5$ ． |
| $\times 4$ | Input is output at y1 with $\mathbf{- c l e c t . ~}<3,5$. |
| ら®lごせ | Dependent of input value，the relevant variable is output at 1 1． |


| Analog outputs |  |
| :---: | :---: |
| $\cdots 1$ | According to the input value of ら®lect．，the relevant input variable is output． |
| C．ESC2 | Cascade output＝Seleot－ 3 |

## No parameters！

## III-8 Limit value signalling and limiting

## III-8.1 ALLP ( alarm and limiting with fixed limits(No. 40))



## Signal limiting:

Parameter L 1 determines the minimum, H 1 the maximum limiting. y 1 is limited to the range between L 1 and H 1 . $\mathrm{L} 1 \leq$ $\mathrm{y} 1 \leq \mathrm{H} 1$ ). With parameter H 1 smaller than L1, a higher priority is allocated with H 1 . This means that y 1 is $\leq \mathrm{H} 1$.

Fig. 9 Limiting at $H 1<L 1$


## Limit signaller:

The limit signaller has two 2 low and high alarms (L1, L2, H1 and H2). Configuration parameter Sel ert. can be

The limit values are freely adjustable as parameters and have an adjustable hysteresis of ? 0 .
The smallest separation between a minimum and a maximum limit value is 0 .
When an alarm is triggered, the corresponding output ( $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{H} 1$ and H 2 ) is logic " 1 ".

## D -alarm ( $\mathrm{d} \times \mathrm{x} 1 / \mathrm{d} \mathrm{t}$ )

Value $\mathrm{x} 1(\mathrm{t}-1)$ measured one sampling interval before is subtracted from instantaneous value $\mathrm{x} 1(\mathrm{t})$. This difference is divided by calculation cycle time $\operatorname{Tr}(100,200,400,800 \mathrm{~ms})$.
Thus input variable $x 1$ can be monitored for its rate of change.

Alarm with offset $(x 1-x \mathbf{x})$ :
$x 1$ can be shifted by means of $x 0$. This corresponds to the offset of the adjusted alarm limits ( $\mathrm{L} 1, \mathrm{~L} 2, \mathrm{H} 1$ and H 2 ) in parallel to the $x$-axis.


## Inputs/outputs

## Analog input

$\times 1$
Input value to be monitored

## Digital outputs

| L1 | Low alarm 1 - becomes logic 1, if $\times 1<\mathrm{L} 1$ |
| :--- | :--- |
| L 2 | Low alarm 2 - becomes logic 1, if $\times 1<\mathrm{L} 2$ |
| H 1 | High alarm 1 - becomes logic 1, if $\times 1<\mathrm{H} 1$ |
| H 2 | High alarm 2 - becomes logic 1, if $\times 1<\mathrm{H} 2$ |

## Analog output

$\because 1$
Calculated and limited input signal $x$.

## Configuration parameter:

| Parameter | Description |  | Range |
| :--- | :--- | :---: | :---: |
| Select. | Selection of the variable to be monitored | x | Default |
|  |  | Alarm with offset | x |
|  |  | $\mathrm{x} 1-\mathrm{xQ}$ | $\leftarrow$ |

## Parameters:

| Parameter | Description | Range | Default |
| :--- | :--- | :--- | :---: |
| H1 | High alarm 1 | $-29999 \ldots 999999$ | 9999 |
| H2 | High alarm 2 | $-29999 \ldots 999999$ | 9999 |
| L1 | Low alarm 1 | $-29999 \ldots 99999$ | -9999 |
| L2 | Low alarm 2 | $-29999 \ldots 999999$ | -9999 |
| x $\mathbf{0 1}$ | Offset x0 | $-29999 \ldots 99999$ | 0 |
| Xscl | Switching hysteresis | $0 \ldots 999999$ | 1 |

## III-8.2 ALLV ( alarm and limiting with variable limits (No. 41))



## Signal limiting:

Analog input H1determines the maximum limiting, L1 determines the minimum limiting. ' -1 is limited to the range between L 1 and $\mathrm{H} 1(\mathrm{~L} 1 \leq-\exists 1 \leq \mathrm{H} 1)$.
As both H 1 and L 1 come from analog inputs, H 1 can be smaller than L 1 . In this case, H 1 is assigned a higher priority. This means that signal $\exists 1$ is $\leq \mathrm{H} 1$ !

Fig. 12 Limiting at $\mathrm{H} 1<\mathrm{L} 1$


## Limit signaller:

The limit signaller has 2 low and high alarms ( $\mathrm{L} 1 ; \mathrm{L} \boldsymbol{2}, \mathrm{H} 1$ and H 2 ). The variable to be monitored can be se-

The limit values are freely adjustable via the analog inputs H 1 and L 1 and have an adjustable hysteresis of $\geq 0$. The smallest separation between a minimum and a maximum limit value is 0 . With an alarm triggered, the relevant output (L1, L2, H 1 and $\mathrm{H} \mathbf{2}$ ) is logic " 1 ".

## D alarm ( $\mathrm{d} \times 1 / \mathrm{dt}$.)

Value $\mathrm{x} 1(\mathrm{t}-1)$ measured one sampling interval before is subtracted from instantaneous value $\mathrm{x} 1(\mathrm{t})$. This difference is di vided by calculation cycle time $\operatorname{Tr}(100,200,400,800 \mathrm{~ms})$.

Thus input variable $x 1$ can be monitored for rate of change.

Alarm with offset $(x 1-x \mathbf{x})$ :
$\times 1$ can be shifted by means of $\times \mathbf{0}$. This corresponds to the offset of alarm limits ( $\mathrm{L} 1, \mathrm{~L} \boldsymbol{2}, \mathrm{H} 1$ and $\mathrm{H} \mathbf{2}$ ) in parallel to the $x$-axis.

## Fig. 14 Offset of the alarm limits



Fig. 13 Switching hysteresis and alarm limits:


## Inputs/outputs

| Analog inputs |  |
| :--- | :--- |
| $\times 1$ | Input value to be monitored |
| H1 | High alarm 1 |
| L1 | Low alarm 1 |


| Digital outputs | Low alarm 1 - is logic 1 with $\times 1<\mathrm{L} 1$ |
| :--- | :--- |
| L1 | Low alarm 2 - is logic 1 with $\times 1<\mathrm{L} 2$ |
| L2 | High alarm 1 - is logic 1 with $\mathrm{x} 1<\mathrm{H} 1$ |
| H 1 | High alarm 2 - is logic 1 with $\mathrm{x} 1<\mathrm{H} 2$ |
| H 2 |  |


| Analog output | Calculated and limited input signal $\times 1$. |
| :--- | :--- |
| $\because 1$ |  |

## Configuration parameters:

| Parameter | Description | Range | Default |  |
| :--- | :--- | :---: | :---: | :---: |
| Sel ēt. | Selection of variable to be <br> monitored | $\mathrm{x1}$ | $\times 1$ | $\leftarrow$ |

## Parameters:

| Parameter | Description | Range | Default |
| :--- | :--- | :---: | :---: |
| स2 | High alarm 2 | $-29999 \ldots 999999$ | 9999 |
| L2 | Low alarm 2 | $-29999 \ldots 999999$ | -9999 |
| X0 | Offset x0 | $-29999 \ldots 999999$ | 0 |
| XE- | Switching hysteresis | $0 \ldots 999999$ | 1 |

## III-8.3 EQUAL ( comparison (No. 42) )



The function checks the two analog input values $x 1$ and $x 2$ for equality.
The values are equal, if the amount of their difference is smaller than oder equal to the preset tolerance.

| Comparison conditions | z6 | z5 | z4 | z3 | z2 | z1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\times 2+$ Diff < $\times 1$ | 1 | 1 | 0 | 0 | 0 | 1 |
| x2-Diff $\leq$ x1 $\leq \times 2+$ Diff | 1 | 0 | 1 | 0 | 1 | 0 |
| x2-Diff > x 1 | 0 | 1 | 1 | 1 | 0 | 0 |

The tolerance can be adjusted either as parameter Diff (Mode = Fi:ar: Diff) or entered at analog input Diff (livide = InF: Difff).

## Inputs/outputs

| Analog inputs |  |
| :--- | :--- |
| $\times 1$ | 1st input value to be compared |
| $\times 2$ | 2nd input value |
| $D i f f$ | Tolerance for comparison operations |


| Digital outputs |  |
| :---: | :---: |
| z1 | $z 1=1$ with $\times 2+$ Diff $<\times 1$ |
| z2 | $z 2=1$ with $22-$ Diff $\leq \times 1 \leq * 2+$ Diff |
| 23 | zS $=1$ with $\times 2-$ Diff $>\times 1$ |
| z4 | z4=1 with $\times 2+$ Diff $\geq$ x1 |
| z5 | z $5=1$ with $\times 2-$ - $i f f><1>22+D i f f$ |
| z6 | 26=1 with $\times 2-$ Diff $5 \times 1$ |

## No configuration parameters!

## Parameters:

| Parameter | Description |  | Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| Hode | Tolerance source | Parameter Diff | F:ヨr:ヨ. Diff | $\leftarrow$ |
|  |  | analog input Diff | IriF. Diff |  |
| Diff | Tolerance for com son operation |  | $0 \ldots 999999$ | 0 |

## III－8．4 VELO（ rate－of－change limiting（No．43））



The function passes input variable x 1 to output y 1 and limits its rate of change $\mathrm{dx} 1 / \mathrm{dt}$ to a positive and negative gradient．
 Switch－over between the gradient sources is by parameter lione for the positive gradient and by lione for the negative gradient．

Via digital inputs d 1 and d 2 ，limiting can be switched off separately for positive and negative rates of change．
When using the analog inputs for gradient adjustment，the following is applicable：
$\overline{\mathrm{G}} \mathbf{r} \mathbf{K}+\geq 0$ or $\overline{\mathrm{G}} \mathbf{r} \mathbf{K}-\leq 0$ otherwise the relevant gradient is set to 0 ．

The function has a＇memory＇．This means：after power－on，it continues operating with the value of y1 which existed at power－off，provided that the RAM data are still unchanged．

Inputs／outputs

## Digital inputs

| -1 | Control of positive gradient $0=$ the selected gradient is effective． $1=$ gradient $=\hat{\imath}$ |
| :--- | :--- |
| -C | Control of negative gradient $0=$ the selected gradient is effective． $1=$ gradient $=-\hat{\imath}$ |

## Analog inputs

| ＜1 | Input variable to be limited |
| :---: | :---: |
| Gr－\％＋ | positive gradient［ $\left.{ }_{\text {cs }}\right]$ with parameter Mode $+=\ln \mathrm{n}$ ． $\mathrm{Gr} X_{+}$ |
| Gr－X－ | negative gradient［1／s］with parameter Mode－＝Inp．GrX－ |

## Analog output

| $-\exists 1$ | Limited input value $x 1$ |
| :--- | :--- |

## No configuration parameters！

## Parameters：

| Parameter | Description |  | Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| Moder | Source of positive gradient |  | F：ar＇ヨ．Girer | $\leftarrow$ |
|  |  | ariقlog infut．Gr－X＋ | IrF：Gr－${ }^{\text {¢ }}$＋ |  |
| Mo゙すご | Source of negative gradient |  | F：ar＇ヨ．Gir\％－ | $\leftarrow$ |
|  |  | arabloy infut．Gr－X－ | IriF：Gr＊＊－ |  |
| Gr＇$\times$＋ | positive gradient［ $1 / \mathrm{s}$ ］with parameter |  | $0 . . .999999$ | 0 |
| Gr＊${ }^{\text {－}}$ | negative gradient［1／s］with parameter |  | －29 999 ．．． 0 | 0 |

## III-8.5 LIMIT ( multiple alarm (No. 44))



The function checks input variable x1 for 8 alarm values L1. , , L B. Dependent of configuration by lione 1 ... Mone $\mathbf{B}$, the relevant alarm value is evaluated as MAX or MIN alarm.

With MAX alarm configuration, the alarm is triggered when the input signal is higher than the alarm value and finished when it is lower than ( alarm value - hysteresis $\mathrm{K} \boldsymbol{\mathrm { s }} \mathrm{d}$ ).

With MIN alarm configuration, the alarm is triggered when the input signal is lower than the alarm value and finished when it is higher than ( alarm value + hysteresis K :- ).

Fig. 15


Inputs/outputs

## Analog input

| $\mathrm{X1}$ | Input variable to be monitored |
| :--- | :--- |

Digital outputs

| $11 \ldots, 18$ | The alarm statuses of alarm 1 to alarm $8: 0=$ no alarm; $1=$ alarm case |
| :--- | :--- |

Configuration parameters:

| Parameter | Description |  | Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| Model . . . Modes | alarm functions of the 8 alarms | max-alarm |  | $\leftarrow$ |
|  |  | min-alarm | MIH-ヨl.arm |  |

## Parameters:

| Parameter | Description | Range | Default |
| :---: | :--- | :---: | :---: |
| L1 ... LB | Alarm values of alarm 1 to alarm 8 | $-29999 \ldots 999 \mathrm{g99}$ | 0 |
| Ks.d | Switching hysteresis Xsd | $0 \ldots 999999$ | 0 |

## III-8.6 ALARM ( alarm processing (No. 45) )


x1 is checked for a lower and an upper alarm value. Additionally, digital alarm input $\mathbf{f} \boldsymbol{\exists}$ il can be used. Configura-

 the monitored value is again within the limits. This can be used e.g. for suppressing an alarm message with change.

During value change at the exit x w EuF- a pulse with the length of a scanning cycle Ts is sent.

Fig. 16 Alarm suppression with change


Inputs/outputs

## Digital inputs

| f'eil | Digital alarm signal e.g. fail signal of AINP |
| :---: | :---: |
| stor |  monitored value is again within the limits. |


| Analog input |  |
| :---: | :--- |
| x 1 | Input variable to be limited |
| Digital output |  |
| $\exists 1 . \mathrm{rr}^{\circ} \mathrm{m}$ | Alarm status: $0=$ no alarm; $1=$ alarm |

## Configuration parameter:

| Parameter | Description |  | Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| Fros | Alarm function | only $\times 1$ is monitored | MEE. VG1. \%1 | $\leftarrow$ |
|  |  | $\times 1$ and $f$ i i 1 are monitored | X1 + fail |  |
|  |  | only $f$ fail is monitored | f.ヨil |  |

## Parameters:

| Parameter | Description | Range | Default |
| :---: | :--- | :--- | :---: |
| LimL | lower limit for the alarm | $-29999 \ldots 999999$ | -10 |
| LimH | upper limit for the alarm | $-29999 \ldots 999999$ | 10 |
| Lxsed | Switching hysteresis Xsd | $0 \ldots 999999$ | 10 |

## III-9 Visualization

## III-9.1 TEXT (text container with language-dependent selection (No. 79))



The text block contains a list of user texts which can be displayed by various operating pages (programmer, VWERT and ALARM). These texts can be displayed and adjusted as a selection list on a VWERT page (e.g. for plain text selec tion of recipes).

The function block is cascadable, if more than 4 texts are availabe for selection.
Texts can be entered only via engineering tool: 4 texts of 16 characters

## Inputs/outputs

| Analog inputs |  |
| :---: | :---: |
| Index | Input for text selection |
| O.Esc | Cascade input for further text blocks in the same language |
| USrLarı | Input for a text block with texts in a further language |

## Analog outputs

Index Number of selected text in the text block

Output "Index" of the last text block in a text cascade must be wired to the block on the operating page of which the texts must be used, e.g. VWERT. The number of the display text is allocated to the index input of this text block.

The texts can be extended into any number of texts via the cascade input (Casc). For this, wire the index output of the subordinated block (texts 5 ...8) to input "Casc" of the next text block. The index for text selection is adjustable only at the index input of the last block (see example below).
For user language selection, wire the index output of the (language) text block to language input UsrLan of the used text block. During selection of the user language, its texts will replace the texts of the first text block. User language selection is central at the status block.

Fig. 17 : Wiring of cascaded text blocks. User language selection is via the status block.


## III-9.2 VWERT ( display / definition of process values (No. 96) )



## General

This function permits display or definition of 6 analog or digital process values in 6 display lines. These values can be changed also via the KS98-1 communication interface. The function block can be cascaded, whereby a scroll field with more than 6 lines can be implemented on the operating page.

- Determination if the display line has digital or analog functions, or if it is switched off is made via configurations (generation of an empty line in the display).
- Possible display functions are: analog, digital, text, menu, push-button, switch and radio button.
- Normally, the values applied to the inputs are displayed.
- A value adjustable at the front panel is output at the relevant function output.
- Only adjustable lines are selectable.
- The change of these values from the operating level can be switched off (lロ心.
- Parameters $\mathbf{\Sigma 1}$... $\mathbf{\Sigma 6}$ or' -1 ... $\unlhd \mathbf{E}$ are used as initial value for the outputs at power-on.
- The output value is displayed only, if the output is fed back to the relevant input, or if the display for this value is in the adjustment mode.
- With a positive flank at the $\boldsymbol{s}$ tore input, the values applied to the remaining inputs are stored in parameters

 set, no values can be changed. With digital inputhine set, the operating page cannot be displayed. The engineering
tool can be used to configure a 16－digit text for the display header and further texts for identification of value and unit， or for the two digital statuses．
Values of the used analog inputs are stored as parameter values when detecting a positive edge at the stor－e－input．This input should be activated only with relevant changes of the input values．Too frequent storing operations may lead to the destruction of the EEPROM！（ $\rightarrow$ page 311）


## Inputs／outputs

| Digital inputs： |  |
| :---: | :---: |
| hide | Display suppression（with hi ide＝ 1 the page is not displayed in the operation． |
| 100k | Adjustment locking（with locke＝ 1 the values are not adjustable by means of keys $\triangle$（ $\mathbf{\nabla}$ ）． |
| －11．．．6 | Process statuses to be displayed．（ Default＝0） |
| stior＊e | With a positive flank（ $0 \rightarrow 1$ ）the input values are used as output values． |

## Digital outputs：

| Z1．．．z | Valid process values |
| :---: | :---: |
|  | If a value is changed during operation，the change－output of the VWERT－block is set to 1 for one calculating cycle． |

## Analoginputs：

| Analog inputs： | Process values to be displayed（default $=0$ ） |
| :--- | :--- |
| $\times 1 \ldots . \ldots$ | By wiring the casc－input with the bl－no output of another VWERT，cascades can be set up |
| $0 . E-G$ |  |


| Analog outputs： |  |
| :---: | :---: |
| － 1 1．．．＇-16 | Valid process values |
| Bl－ヶ口 | Block number of this output |
| l iヶ゙ | If a value is changed during operation，for one calculating cycle the line－output of the VWERT－block is set to that value that was changed（1－6）． |

## Parameter and configuration data

| Parameter | Description | Range | Default |
| :--- | :--- | :--- | :---: |
| $\mathbf{Z} 1 \ldots \mathbf{Z} \mathbf{G}$ | Start values for digital outputs 1．．6 at power－on | $0 / 1$ | 0 |
| Y1 ．．．YG | Start values for the analog outputs 1．．． at power on | $-29999 \ldots 999999$ | 0 |


| Configuration | Description |  | Values | Default |
| :---: | :---: | :---: | :---: | :---: |
| DiEF1．．． | Function of | Tisplay line，value ajustable | Edidesome |  |
| DisF6 | display line 1．．． 6 | ＇only display line | diEFl－ Empt． | $\leftarrow$ |
| Mode 1 ．．． Mode6 | Type of display line 1．．． 6 | ＇analog value display ，digital value display | ango | $\leftarrow$ |
|  |  | value display in time format | time |  |
|  |  | selection group（radio button） | 「ごすio |  |
|  |  | toggle function | switch |  |
|  |  | push－button function（pressed＝1） | F－ssk－buttor |  |
|  |  | text selection | text． |  |
|  |  | menu function（page changing） | Mㅌำい |  |
| DFP1 ．．．DFG | Digits b | hind decimal point in analog line 1．．．6 | $0 \ldots 3$ | 0 |

## Entry and display of texts

Changing the texts displayed in the unit is only possible in the engineering tool! Max. 16 characters can be entered into each text parameter. Dependent on whether a line was configured as an analog, digital, radio, switch, push-button
 are shown in the device. Further detailed information on the various display types is given at the end of the section.
With digital displays (digital, switch, push-button and radio):
signal $=0$ : dependent of line of 'Text1 a ... Text6 a'
signal $=1$ : dependent of line of 'Text1 $b \ldots$ Text6 b'

## VWERT operating page

The VWERT operating page can be selected in the operating page menu with non-activated 'hide' input.
For information on the operation, see section Operating pages on page 36
If aline is configuratd as display, the value can't be changed.
Operation of line modes radio, switch and push-button is described in section I.9.4 "Adjusting values".

When using the VWERT block in an enginering, operation and function must be described separately.

Fig. 18

## Intesratior surv <br>  <br>  <br> LEDS off <br> LED4 on

## VWERT block cascade connection

For linking several VWERT operating pages, the BI-no output of a further VWERT must be wired with the Casc input of the calling VWERT. Thereby, the last page which must be connected can be linked also to the start page (ring structu re).
Cascade connection of a VWERT block is indicated by arrows $\boldsymbol{\Delta} \boldsymbol{\nabla}$ on the display page. A previous block (Bl-no output wiring) above the first line and a next block (Casc input wiring) below the last line are marked, otherwise, these arrows are omitted. When setting the cursor onto one of these arrows and pressing key Enter, a change to the relevant VWERT page occurs. With standard exit from the called up VWERT page a change to the selection list of the operating pages is made.

## Selectable display modes in detail

Data type "analog"
The line contains 2 static texts ( 6 characters) and the analog value connected to $\mathrm{X} 1 \ldots \mathrm{X} 6$. Changing the value is done as described above, if changeability is configured.

With the corresponding input Xn wired via a type ALLP function block, its limits H1 (max. limit) and L1 (min. limit) are used as adjustment limits for this value. Unless an ALLP block is connected to the input, limits -29999 to 999999 remain valid.

## Example: Value with limits:

Apart from its maximum number of digits behind the decimal point, each value can have its own adjustment limits, which are determined by parameter values L 1 and H 1 of a previous ALLP block. Unless the source of the display value is the VWERT, the ALLP uses these parameter values for limiting the value.

Fig. 19 VWERT page with the line modes: marking of previous page, analog, time, text selection, menu, digital, switch

(2) Data type "digital"

Dependent digital input bit value of the relevant line, text "0" (Name_n) or text "1" (Unit_n) is displayed. With a static input value, static text output can be generated (e.g. headline).

Example: value with limits:
In addition to its maximum number of digits behind the decimal point, each value can have its adjustment limits which are determined by parameter values L 1 and H 1 of a connected ALLP block.
Unless the display value source is the VWERT itself, the ALLP limits the value with these parameter values.
(3) Data type "time" (analog output)

Data type "time" can be used to display or to adjust times in HH:MM:SS or HH:MM, whereby the last decimal digit indicates the full minutes. The digits behind the decimal point are for display of seconds.

- With the digits behind the decimal point DP set to 0 , adjustment of seconds is not possible. Only hours and minutes can be adjusted. If the relevant configuration value DP is 2 , adjustment of seconds is also possible.

Fig. 20


- From a time above 100 hours, seconds are not displayed any more.
- The adjustment range is within 00:00:00-15999:59 hours. Due to the limited resolution of a float value, adjust ment ist possible only in steps of 6 seconds from value 16:40:00.


## (4) Data type "radio" (radio button; digital output)

Data type "radio button" can be used for changing over between combined selection fields.

- After selecting, changing is done directly without starting with function key 윤.
- "Radio button" arranged successively in one VWERT form a common group.
- Only one element of this group is activated.
- By actuating the function key, the radio button on which the cursor is standing is activated. All relevant other ones are de-activated.
- A new group starts, if another data type is defined between 2 radio buttons.
- Unless a radio button is activated during data transmission to VWERT, all radio buttons remain inactive. If more than 1 button is active, the 1 st one of the group is activated, the other ones are inactive.
(5) Data type "switch" (digital output)

Data type "switch" can be used to implement switch-on/switch-off (toogle) functions.

Fig. 21

- After selection, adjusting is done directly without starting with function key 원.
- Pressing the function key will activate a de-activated switch and de-activate an activated switch.
(6) Data type "push-button" (digital output)

Data type "push-button" can be used to realize short switch-on/switch-off (hold) functions.
Mode
(5) Wgesern stopf


- After selection, adjusting is done directly without starting with function key H .
- As long as the function key is pressed, the output is activated. When releasing the key, the output is de-acti vated.
(7) Data type "text" (analog output, see also: Function block TEXT)

Data type "text" can be used for display of indexed texts for analog integer signals. Moreover, an analog value can be allocated to a text when adjusting.

- The corresponding input must be connected with the index output of a text block
- The number of the text to be selected (VWERT output Y1...Y6) is applied to the index input of the first (next to VWERT) text block
- The text blocks cascaded by wiring the index output of another text block with the Casc input of the relevant text block. Text selection is always via the index input of the text block next to VWERT.
- Via the UsrLan input, text blocks of different language can be appended. Language switchover (language index) is defined by the value at the UsrLan input of status block 98. Unless an appropriate text block for the language is available (e.g. language index too high), the corresponding text is output in the last language block found.
- When selecting a text in the VWERT to be displayed, the number of selectable texts is limited by the number of connected text blocks.
- If the index for text selection comes from a different origin, no text is displayed if the index is beyond the possible text selection ( 0 or $>\max$ ). VWERT marks the line with " $\qquad$ -".
- With text selection at VWERT, the initial value ( parameter Y1...Y6) should be set $>0$ to avoid a start value of
$\qquad$ ".


## (8) Data type "menu"

Data type "menu " can be used for changing to other operating pages (menu without sub-menu items, linking not possible).

- The value applied to the corresponding input is interpreted as block number of the operating page to which changing is required.
- Changing to the specified page is done by pressing the Enter key. Unless the page is accessible, a change to the operating page selection list is made. This list contains all the blocks which are available for selection. If a page is not accessible, the reasons may be:

1. Block number not defined
2. Block number does not have an operating page
3. Block cannot be displayed instantaneously because hide $=1$.

- When making a standard exit from the operating page, return is to the calling VWERT page.
- When using this procedure for changing to a VWERT operating page which also contains a menu type line, no fur ther change will occur.


## III-9.3 VBAR ( bargraph display (No. 97) )



## General

This function permits the display of 2 analog input signals as bargraphs, and of 2 analog input signals as numeric valu es. Moreover, two analog output signals can be defined. Another 4 analog inputs can be used to position 2 markings at each side of the bar within the bargraph range. These markings can be e.g. alarm limits or reference values. With open marker inputs, or out-of-range marker values, display of markers is suppressed.

- Determination of horizontal or vertical bargraph is via configuration (type).
- Determination if value displays are visible or switched off
- Configuration of start values x3mid or x4mid determines, if the bargraph points only in one direction (from top or bottom) or in 2 directions from the middle.
- The values applied to the inputs are displayed.
- A value which is adjustable via the front panel is output at the relevant analog output.
- Changing these values from the operating level can be suppressed.
- Parameters $\mathrm{Y} 1, \mathrm{Y} 2$ are the initial values for Power-On.
- The output value is displayed only with the output fed back to the relevant input, or if the display for this value is in the adjustment mode.
- Value changes are stored as parameters $Y^{\prime} 1 / Y 2$ in non-volatile EEPROM.
－With a positive edge at the store input，the values applied to the signal inputs are stored as parameters y1 and $\lrcorner 2$ ，i．e．as output values．
－When an ALLP is connected at inputs x 1 and x 2 ，its limits L 1 and H 1 are used for parameter adjustment．
With digital input lows set，no values can be changed．With digital input hide set，the operating page cannot be displayed during operation．A 16－digit text for the display header can be adjusted user－specifically via the engineering tool．The same is applicable for further texts for identification of value and unit．

Values of the used analog inputs are stored as parameter values when detecting a positive edge at the stioree－input．This input should be activated only with relevant changes of the input values．Too frequent storing operations may lead to the destruction of the EEPROM！（ $\rightarrow$ page 311）

## Inputs／outputs

| Digital inputs： |  |
| :---: | :---: |
| hide | Display suppression（withhide＝ 1 the operating page is not displayed）． |
| lowe | Adjustment blocking（with l ouke＝ 1 these values cannot be adjusted by means of keys $\Delta \boldsymbol{\nabla}$ ）． |


| Analog inputs： | Process values to be displayed as values（default $=0$ ） |
| :--- | :--- |
| $\times 1 / \times 2$ | Process values to be displayed as bargraph（default $=0$ ） |
| $\times \mathbf{S} / \times 4$ |  |


| Analog outputs： |  |
| :--- | :--- |
| $-1 /-\exists 2$ | Valid process values |

## Parameter and configuration data

| Parameter | Description | Range | Default |
| :--- | :--- | :--- | :---: |
| $Y 1 / \mathrm{Y} 2$ | Start values at power－on | $-29999 \ldots 999999$ | 0 |


| Configuration | Description | Values | Default |
| :---: | :---: | :---: | :---: |
|  | Function of display x1／x2，value | diEF＋Edi |  |
| DisFl | numeric only display x1／$\times 2$ |  |  |
| DisF2 | $\text { display } 1 \text { and } \times 1 / \times 2=\text { empty }$ $2$ | EMFt＇s |  |
| DF1／DF－2 | Digits behind the decimal point in numeric display 1 ／ 2 | $0 \ldots 3$ | 0 |
| T E F | Position of Both bargraphs horizontal bargraphs＇Both bargraphs vertical | horizont． Uertiにうl | $\leftarrow$ |
| \％${ }^{1}$ | Display scaling bargraph 1， 0 \％（left or bottom end） | －29999．．． 999999 | 0 |
| XS 16E | Display scaling bargraph 1，100\％（right or upper end） | －29999．．． 999999 | 100 |
| XS mid | Display scaling bargraph 1，start value（middle） | －29999．．． 999999 | 0 |
| 人4 6 | Display scaling bargraph 2，0\％（left or bottom end） | －29999．．． 999999 | 0 |
| X4 160 | Display scaling bargraph 2，100\％（right or upper end） | －29999．．． 999999 | 100 |
| 人4 mid | Display scaling bargraph 2，start value（middle） | －29999．．． 999999 | 0 |

## VBAR operating page

VBAR has an operating page, which can be selected in the operating page menu with the 'hioné input not used. Changing the texts displayed in the unit is only possible in the engineering tool! Max. 16 characters can be entered in each text parameter. A value configured as display cannot be changed.

## The following values or texts are displayed:

Fig. 22


## III-9.4 VPARA ( parameter operation (No. 98) )



## General

Function VPARA provides an operating page which can be used for changing max. 6 parameters of other function blocks available in the engineering from the operating level.

Each parameter to be displayed is made known to the display function with block number and parameter number by means of two configuration data. The engineering tool supports parameter setting by a special operating sequence in which the parameter numbers of the selected block are selected by means of the parameter descriptions $(\rightarrow$ see figure opposite).
Additionally, an identifier and a unit text can be specified.

Values of the used analog inputs are stored as analog values, when a positive flank is detected at the storee input. Activation of this input must be organized so that it occurs only with relevant input value changes. Too frequent storage can lead to EEPROM destruction.

Fig. 23


## Inputs/outputs

| Digital inputs: |  |
| :--- | :--- |
| hide | Display suppression (withhide $=1$ the page is not displayed in the operation). |
| lousk | Adjustment blocking (with lowk $=1$ the values are not adjustable by means of keys $\boldsymbol{\Delta} \boldsymbol{\nabla})$ ). |
| Storer | With a positive flank ( $0 \rightarrow 1$ ) the input values are stored as parameter values. |

Digital outputs:

| $\mathbf{z 1} \ldots \mathbf{Z}$ | The outputs provide a status, which shows if the last storage of the values taken over from the inputs was <br> successful $(z 1 \ldots z 6=0)$. Errors may occur due to exceeded limits of the parameter value or due to non-exist- <br> ing parameters $(z 1 \ldots z=1)$. |
| :--- | :--- |


| Analog inputs: |  |
| :--- | :--- |
| $\times 1 \ldots . . .8:$ | Process values to be stored as parameter values (default $=0$ ) |

## Analog outputs:

| A1...' -6 | The values of the 6 parameters are output at the analog outputs. Unused parameters provide value ' 0 '. |
| :---: | :---: |
| BL-トワ | Block number of this output |

## Parameter and configuration data

| Configuration | Description | Values | Default |
| :---: | :---: | :---: | :---: |
| Blouk | Block number of parameter to be displayed | ** | * |
|  | Parameter number | ** | ** |

* To avoid confusions and thus operating errors, we recommend adjusting block numbers and parameters exclusively via the engineering tool, where the parameters with their short-form descriptions must also be specified. Text entry is only possible via the engineering tool.


## Entry and display of texts

Changing the texts displayed in the unit is possible only in the engineering tool! Max. 16 characters can be entered in each text parameter. Dependent of whether a line is allocated to a block number or defined as a text line, all charac -



Parameter allocation to the display lines:
Block1; Num1; Text1; Unit $1 \rightarrow$ line 1 ....Block6; Num6; Text6; Unit6 $\rightarrow$ line 6

## VPARA operating page

VPARA has an operating page, which can be selected in the operating menu with input 'Fiáder not used.

Fig. 24


## III-9.5 VTREND ( trend display(No. 99) )



## General

Function VTREND collects 125 values of the analog input ' $\times 1$ ' in a shift register and permits value display as a trend curve. When the shift register is filled with 125 values, the value 125 samples ago is overwritten by a new value. With input sample 's. ヨMFle' not used, data recording is synchronous with the time units specified in the configuration. Trigger pulses at the 'Sample' input permit asynchronous data recording.
The properties of KS98-1 function block VTREND are:

- The resolution of the $\mathrm{KS} 98-1 \mathrm{Y}$ axis is 60 pixels.
- The resolution of the $X$ axis is 125 pixels.
- With further trend blocks connected at the output of a trend block (cascade), these blocks can be viewed by shift ing the time axis (scrolling the time axis).
- The $Y$ resolution can be magnified by factor 4, and scrolling throughout the range is possible in steps of $12,5 \%$. The zero shift remains unchanged in the background when returning to normal resolution.
- The old settings also remain unchanged when leaving the operating page and calling it up again.
- The lower scanning time limit is set to 0,01 for unit hours.
- Output Bl-no provides the operating page block number.

5 accesses via the communication interface, each providing data packages of 25 trend data from KS 98-1, are available.
(i) When connecting 2 trend blocks to one trend output by mistake in the case of a cascade, the one with the lower number is ignored. The number of cascaded blocks is not limited.
(i) If blocks in the chain have different scanning times or different ranges, data display is faulty. No warning is output. The trend display continues when scrolling in the time axis (paging into the past) rather than being stopped.
(i) With voltage failure, the sampled values remain unchanged.

The changing of the texts displayed, is only possible in the engineering-tool! Max. 16 digits can be entered for every textparameter.

Inputs／outputs

| Digital inputs： |  |
| :---: | :---: |
| hide | Display suppression（with F ide $=1$ the page in the operation is not displayed）． |
| disable | The digital input can be used to interrupt automatic or triggered sampling（high－active）． |
| reset． | The digital input deletes the shift register and resets trend measurement． |
| EamFle | If the digital input is wired，sampling is triggered by a positive flank $(0 \rightarrow 1)$ at this input．In this case，the ad－ justed sampling interval（configuration）is not effective． |


| Digital outputs： |  |
| :--- | :--- |
| reader | After filling the shift register with 100 values first，the digital output is set to high． |


| Analog inputs： |  |
| :--- | :--- |
| $\times 1$ | Process value to be displayed as trend（default $=0$ ） |


| Analog outputs： |  |
| :---: | :---: |
| X－16 | The value of the shift register which is overwritten by the next sample value is provided at the analog output （value 100 samples ago）． |
| BL－ro | Block number of this output |

Configuration data

| Configuration | Description | Values | Default |
| :---: | :---: | :---: | :---: |
| Urit． | $\begin{array}{ll}\text { Unit of sampling interval } & \\ & \text { seconds }(\underline{s}) \\ & \text { Minutes }(\mathbf{m}) \\ & \text { Hours }(\mathbf{i n})\end{array}$ |  | $\leftarrow$ |
| S．armie | Value of sampling interval in the unit defined with＇Unit＇． | 0，2．．．200000 | 1 |
| DF | Digits behind the decimal point for value displays | $0 . .3$ | 0 |
| $X$ 区 | Display scaling start value（0\％） | $\begin{gathered} -29999 \ldots 20000 \\ 0 \\ \hline \end{gathered}$ | 0 |
| 人160 | Display scaling end value（100\％） | $\begin{gathered} -29999 \ldots . .20000 \\ 0 \\ \hline \hline \end{gathered}$ | 100 |

## Text display and entry

Changing the texts displayed in the unit is possible only in the engineering tool！
Max． 16 characters can be entered into each text parameter．

## VTREND operating page

VTREND has an operating page which can be selected in the operating page menu with input＇hide＇no connected． The operating page is provided only for display of trend data．Making changes in the input fields will change only the visible trend display section，without making changes to the data．

Fig． 25


## Examples:

## Trend recording with $\mathbf{2}$ curves

Although distinction of different curves is not possible, display of two values on a trend page may be purposeful (e.g. controller and process value, or one value and zero, in order to have a curve).

In the example, a clock triggering switch-over between the values together with the SELV1 is generated by means of a pulse.

In the example, a TIME1 can be used to generate a clock for switching over between values with SELV1.

E.g. for making a record in VTREND at intervals of a second, unit is s and sample is 1 .
In order for the TIME1 to change between 0 and 1 once per second, T1 and T2 must be set to $0,9 \mathrm{~s}$. One cycle (0.1s) is lost for detection of the own output change).

In the following example, a pulse is used to create a clock which generates switchover between values with SELV1.

For making a record at intervals of a second e.g. in VTREND,

Urit. is set to s and
SaMFle is set to 1 .
Settings:


Unit = $s$ and $S$
ample $=1 \xlongequal{\wedge} 1 / \mathrm{s}=3600 / \mathrm{h}$
$x 0=0, \times 1010$ and pulse/h to $3600,1 / 2$ sample interval $=1800$ must be applied to pulse input $x 1$.

## Cascading

Fig. 26 Example of trend-/datarecording with $n$ values


Trend or data recording with any number of values can be realized by cascading VTREND function blocks.
Limiting refers only to the number of available block numbers and to the calculation time. The data sequence is de pendent of VTREND function block wiring. In wiring direction the block numbers must be ascending.

## III-10 Communication ISO 1745

In total, max. 20 L1READ and L1WRIT functions can be configured (blocks $1 \ldots 20$ ), any combination of functions is possible. Any number of data can be used in the functions.

## III-10.1 L1READ ( read level1 data(No. 100) )



## General

Any 7 analog process values ( $\times 1 \ldots \mathrm{x}$ ) and any 12 digital status informations ( $\mathrm{d} 1 \ldots \mathrm{~d} 12$ ) of the engineering are composed into a data set for the digital interface. The digital interface can read the data set as a complete block with code 00 , function number 0 , or the individual values with codes 01...09, function number 0 .

## Inputs/outputs

## Digital inputs:

| -17 | Digital process values, which can be read via interface (status byte 1). (Default = 0) |
| :--- | :--- |

-17 ... D12 Digital process values, which can be read via interface (status byte 2). (Default = 0)

## Analog inputs:

$\times 1 \quad \times 7$
Analog process values, which can be read via interface. (Default =0)

## Engineering example

In the following example, several process data (process value, effective and control deviation) and controller statuses (automatic/manual, Wint/Wext and $y / Y 2$ ) are connected with the L1READ function block. Now, these data can be read in a message via interface.

## Example for L1READ engineering



## III-10.2 L1WRIT ( write level1 data (No. 101))



## General

This function is used to provide a data set transmitted by the interface to the engineering. The digital interface de scribes EEPROM cells with codes $31 \ldots 39$, function number 0 . The data set comprises 8 analog process values (y1...y8) and 15 digital control informations ( $z 1 \ldots 215$ ), which are provided to the engineering.
(i)

The transmitted data are stored in the EEPROM. After power failure, start is with the data rather than with the default values.

## Inputs/outputs

## Digital outputs:

ェ1 $\ldots \mathbf{\Sigma 1 2}$ Digital process values, which can be written via the interface (default = 0)


## Engineering example

In the following example, the L1WRIT function block is used to make several process data (process values x2, x3, external and two alarm limits) and the control information (automatic/manual, w/W2, Wint/Wext and y/Y2) available to the engineering. These data can be written in a message via interface.

Example for L1WRIT engineering


## PROFIBUS

Max． 4 functions DPREAD and DPWRIT can be configured（blocks $1 . . .4$ or 11．．． 14 ）．Any combination of functions is pos－ sible．Any data can be used in the functions．

## III－10．3 DPREAD（ read level1 data via PROFIBUS（No．102））



## General

Block numbers 1．．．4．Any 6 analog process values（ $\mathrm{x} 1 \ldots \mathrm{x} 6$ ）and any 16 digital process values（ $\mathrm{d} 1 \ldots \mathrm{~d} 16$ ）of the engineerings are composed for scanning via a PROFIBUS data channel．Block number 1 provides the data for channel 1， block number 2 provides the data for channel 2 ，etc．

The PROFIBUS module reads the data of two channels at intervals of 100 ms ．The digital outputs indicate the PROFIBUS status．

Further information on communication with PROFIBUS is given in the interface description（order no．： 9499940 52711）．

## Inputs／outputs

## Digital inputs：

| $-1 . .28$ | Digital process values，which can be read via the PROFIBUS（status byte 1） |
| :--- | :--- |
| $9 . .216$ | Digitale process values，which can be read via the PROFIBUS（status byte 2） |


| Digital outputs： |  |
| :---: | :---: |
| B－Er＊＊ | PROFIBUS status： 1 ＝bus access not successful |
| F－Er＊＊ | PROFIBUS status： 1 ＝faulty parameter setting |
| E－Er「 | PROFIBUS status： 1 ＝faulty configuration |
| －－¢「「 | PROFIBUS status： 1 ＝no data communication |

[^2]
## III-10.4 DPWRIT ( write level1 data via PROFIBUS (No. 103))



## General

Block numbers 11...14. The data of a PROFIBUS data channel are transmitted into the memory. Block number 11 trans mits the data of channel 1 , block number 12 transmits the data of channel 2, etc. The PROFIBUS module writes the data of two channels at intervals of 100 ms . The data set comprises 6 analog process values (y1...y6) and 16 digital sta tus informations (z1 ...z16), which are available to the engineering. The digital outputs (b-err, p-err, c-err, d-err and valid) indicate the PROFIBUS status.

Further information on communication with PROFIBUS is given in the interface description (order no.: 9499940 52711).

## Inputs/outputs

| Digital outputs: |  |
| :---: | :---: |
| z1... 516 | Digital process values, which can be written via the Profibus. |
| b-error | PROFIBUS status: 1 = bus access not successful |
| F-®r** | PROFIBUS status: 1 = faulty parameter setting |
| ¢-Er- | PROFIBUS status: 1 = faulty configuration |
| - ¢r-r | PROFIBUS status: 1 = no data communication |
| Yelid | PROFIBUS status: 1 = data o.k. |


| Analog outputs: |  |
| :--- | :--- |
| \multirow{4}...'$\because 6$ | Analog process values, which can be written via the Profibus. |

## MODBUS

In total, a maximum of 5 function blocks can be configured. Any combination of functions is possible. In the functions, any data may be used.

## III-10.5 <br> MBDATA (read and write parameter data via MODBUS - no. 104)



## General

The new MBDATA function block behaves analogously to the already known function block VPARA and provides access via MODBUS. Thus up to 16 parameters of other function blocks available in the engineering can be read or changed via MODBUS.
Each parameter is declared to the MODBUS function including block and parameter number by means of two configuration data.

The engineering tool supports parameter setting using a special operating sequence in which the parameter numbers of the selected block are selected by means of the parameter descriptions ( $\rightarrow$ refer to the drawing opposite) .

For additional information :
see KS98-1 Modbus interface description
"sb_ks98-1_mod_e_9499-040-88711.pdf".


## Inputs/outputs

## Analog outputs:

Y1. . . Y1G $\quad$ Analog process values that can be read or written via interface (default = value of the assigned parameter or " 0 "). The values of the 16 parameters are output. Unused parameters provide a value of ' 0 '.

## Configuration data

| Configuration | Description | Values | Default |
| :---: | :---: | :---: | :---: |
| Block $1 .$. . Blowk 6 | Block number of the parameter | --* | - - * |
|  | Number of the parameter | - -* | $--^{*}$ |

* To avoid confusion and thus operator errors, we recommend setting the block numbers and parameters exclusively using the engineering tool where the parameters must be specified with their short-form descriptions.


## III-11 I/O extensions with CANopen

The additional CANopen interface completes the functionality of the multifunction unit basic version by:

- local I/0 extensibility using the PMA RM 200 modular I/O system.
- connection of the PMA multiple-channel temperature controllers with CANopen interface
- on-site data exchange with other KS98-1 (cross communication)



## BUS terminating resistor

Both ends of the CANopen bus must be provided with a bus terminating resistor at (first and last node). For this, the bus terminating resistor provided in every KS98-1 can be used. With the SIL switch closed, the ter minating resistor is activated.
As default, the SIL switch is open (see opposite).

## III-11.1 RM 211, RM212 and RM213 basic modules

The RM 200 system is a basic module (housing) for snap-on rail mounting with 3,5 or 10 slots.
The left socket is always reserved for the RM 201 CANopen bus coupler module. Dependent of requirement, I/O modules or dummies can be plugged into the remaining sockets. The modules click in position in the basic module and can be released using simple tools for replacement (e.g. small screwdriver).

Wiring in the engineering-tool must be according to real wiring (Position = Slot = socket).

Don't insert or remove modules with the supply voltage switched on.


The connecting terminals can be withdrawn easily from the modules.

Fig. 27 Partial engineering for communication with an RM200 node


## III－11．2 C＿RM2x（CANopen fieldbuscoupler RM 201 （No．14））



Coupler module RM201 is fitted with an interface to the CAN bus and plugs into the first slot．
The other slots are provided for various I／O modules，which are polled cyclically via an internal bus．
Outputs

| Analog Outputs |  |
| :---: | :--- |
| Slot． |  |
| Slot． | Connection of RM modules RM＿DI，RM＿DO，RM＿Al and RM＿A0 |


| Digital Outputs |  |  |
| :---: | :---: | :---: |
| こせージャ＊ | $0=$ no engineering error detected | 1 ＝reply from min． 2 nodes with identical node ID；$\rightarrow$ Change the addresses of connected instruments accordingly（e．g．DIP switches on RM 201）． |
|  | 0 ＝correct node Id | 1 ＝wrong communication module ID no reply from any unit with the specified node ID； <br> $\rightarrow$ Adjust the DIP switches on the connected RM 201 and on page＂Parameter Dialog C＿RM2x． |
| Yal id | 0 ＝invalid data | $1=$ data are valid |

Unlike the other KS 98－1 functions，only one data function may be connected to the analog outputs．

## Parameters and configuration data

| Parameter | Beschreibung | Range | Default |
| :--- | :--- | :---: | :---: |
| Hound | RM201node address | $2 \ldots 42$ | 32 |

Prerequisite for communication between KS98－1 multifunction unit and CANopen field bus coupler RM 201 is that the CAN parameter setting is identical．
Adapt engineering tool settings and RM201 fieldbus coupler switch position．


## III-11.3 RM_DI (RM 200-(digital input module (No. 15))



Function $\mathbb{F i l l} \mathrm{DI}$ I handles the data from the connected digital input modules.

## Inputs and outputs

| Analog input |  |  |
| :---: | :---: | :---: |
| Slotex | Connection of one of the slot outputs of the RM200 node (C_RM2x) |  |
| Digital outputs |  |  |
| et-error | 0 = no engineering error detected | 1 = engineering error (several RM module functions at a slot) |
| slotid | 0 = correct slot assignment | 1 = faulty slot assignment (wrong RM module inserted) |
| valid | 0 = no data | 1 = data could be received |
| $\begin{aligned} & \mathrm{di} 1 \\ & \mathrm{Gi} \mathrm{~B} \end{aligned}$ | 1st to 8th digital input signal |  |

* Slot = conn.-no., socket e.g. 2... 10


## Parameter and configuration data

| Configuration | Description | Value | Default |
| :---: | :---: | :---: | :---: |
| HTEPF | Module type | $\begin{aligned} & \text { 0: RM241 }=4 \times 24 \mathrm{VDC} \\ & \text { 1: } \\ & \text { RM242 }=8 \times 24 \mathrm{VDC} \\ & \text { 2: } \\ & \text { RM } 243=4 \times 243 \mathrm{VAC} \\ & \hline \end{aligned}$ | 0 |
| $\begin{aligned} & \text { Inu1 } \\ & \text { Inus } \end{aligned}$ | Direct or inverse output of input signal 1? <br> Direct or inverse output of input signal 8? | direct $/$ inverse | direct |

## III-11.4 RM_DO (RM 200 - digital output module (No. 16))



Function $\mathbb{F} \mathbf{k l}[\mathbf{D O}$ handles the data from connected digital output modules.

## Input and output modules

## Analog input

Slotx
Connection of one of the slot outputs of the RM200 node (C_RM2x)

[^3]| Digital outputs |  |  |
| :---: | :---: | :---: |
| Et-Err | $0=$ no engineering error detected | 1 = engineering error (several RM module functions at a slot) |
| slotid | 0 = correct slot assignment | 1 = faulty slot assignment (faulty RM module fitted) |
| valid | 0 = no data | 1 = data could be received |
| $\begin{aligned} & \mathrm{di} 1 \\ & \mathrm{di} \mathrm{~B} \end{aligned}$ | 1st to 8th digital input signal |  |

## Parameter and configuration data

| Configuration | Description | Range | Default |
| :---: | :---: | :---: | :---: |
| HTS ${ }^{\text {Pr }}$ | Module type | 0: RM251 $=8 \times 24$ VDC, $0,5 \mathrm{~A}$ <br> 1: $\mathrm{RM} 252=4 \mathrm{x}$ relay ( 230 VDC ) 2 A | 0 |
| $\begin{aligned} & \text { Inul } \\ & \text { Inus } \\ & \text { Inver } \end{aligned}$ | Direct or inverse output of input signal 1? <br> Direct or inverse output of input signal 8 ? | direct / inverse | direct |
| FMode 1 <br> . . . <br> FModes | Output last signal orFSt.ete in case of communication failure? | no $\rightarrow$ no particular reaction <br> FStat value output | no |
| $\begin{aligned} & \text { FSt.もtel } \\ & \text { FSt-ates } \end{aligned}$ | Output status in case of error | 0/1 | 0 |

## Note related to hardware type RM 251

The outputs are monitored pairwisely. To avoid faulty displays, unused outputs should be short circuited.

## III-11.5 RM_AI (RM200 - analog input module (No. 17))



Function $\mathbb{F} \boldsymbol{H}$ _AI handles the data from connected analog input modules.

## Inputs and outputs



Parameter and configuration data

| Confiquration | Description | Range | Default |
| :---: | :---: | :---: | :---: |
| MT: | Module type | 0: RM221-0 $=4 \times 0 / 4 \ldots 20 \mathrm{~mA}$ <br> 1: RM221-1 $=4 x-10 / 0 \ldots 10 \mathrm{~V}$ <br> 2: RM221-2 $=2 \times 0 / 4 . . .20 \mathrm{~mA}+2 \mathrm{x}-10 / 0 . . .10 \mathrm{~V}$ <br> 3: RM222-0 $=4 \times 0 / 4 \ldots 20 \mathrm{~mA}$, TPS <br> 4: RM222-1 $=4 x-10 / 0 \ldots 10 \mathrm{~V}$, potentiometer, TPS <br> 5: RM222-2 $=2 \times 0 / 4 \ldots 20 \mathrm{~mA}+2 \times-10 / 0 \ldots 10 \mathrm{~V}$, potentiometer, TPS <br> 6: RM224-1 $=4 \times$ TC/Pt100, 16 bits <br> 7: RM224-0 $=2 \times$ TC, 16 bits <br> 8: $\mathrm{RM} 224-2=1 \times-3 \ldots 3 \mathrm{~V}, 1 \times$ TC, 16 bits |  |
| $\begin{aligned} & \text { STEF } 1 \\ & \therefore \because=1 \end{aligned}$ | Input signal | 1: type J $=-120 \ldots 1200^{\circ} \mathrm{C}$ <br> 2: type K $=-130 \ldots 1370^{\circ} \mathrm{C}$ <br> 3: type L $=-120 \ldots 900^{\circ} \mathrm{C}$ <br> 4: type E $=-130 \ldots 1000^{\circ} \mathrm{C}$ <br> 5: type T $=-130 \ldots 400^{\circ} \mathrm{C}$ <br> 6: type S $=12 \ldots 1760^{\circ} \mathrm{C}$ <br> 7: type R $=13 \ldots . .1760^{\circ} \mathrm{C}$ <br> 8: type B $=50 \ldots 1820^{\circ} \mathrm{C}$ <br> 9: type N $=-109 \ldots 1300^{\circ} \mathrm{C}$ <br> 10: type W $=50 \ldots 2300^{\circ} \mathrm{C}$ <br> 30: Pt100 $=-200 \ldots 850^{\circ} \mathrm{C}$  <br> 40: standard signal $=0 \ldots 10 \mathrm{~V}$  <br> 41: standard signal $=-10 \ldots 10 \mathrm{~V}$  <br> 50: standard signal $=4 \ldots 20 \mathrm{~mA}$ <br> 51: standard signal $=0 \ldots 20 \mathrm{~mA}$ |  |
| $\begin{aligned} & \text { Urit } 1 \\ & \text { Urit } 4 \end{aligned}$ | Temperature unit input 1 to 4 (only relevant with thermo- couple and Pt100 inputs) | $\begin{aligned} & \text { 0: unit }={ }^{\circ} \\ & 1: \text { unit }= \\ & \text { 2: unit }=\mathrm{K} \end{aligned}$ | 0 |
| $\begin{aligned} & \mathrm{Tf} 1 \\ & \mathrm{Tf} \mathrm{C}^{2} \end{aligned}$ | Filter time constant input $1 . . .4$ in (s) | 0 ... 999999 | 0,5 |
| $\begin{aligned} & \times 01 \\ & \times 0.4 \end{aligned}$ | Scaling start value input 1...input 4 | -29 999 ... 999999 | 0 |
| $\begin{array}{r} \times 1601 \\ \times 1604 \end{array}$ | Scaling end value input 1 ... input 4 | -29 999 ... 999999 | 100 |
| $\begin{aligned} & \text { Fail } \\ & \text { Fail } 4 \end{aligned}$ | Signal behaviour with sensor error at input 1... 4 | upscale downscale | $\leftarrow$ |
| $\begin{aligned} & 81 \mathrm{in} \\ & 1 . . .4 \end{aligned}$ | Measured value correction input value Segment point $1 \rightarrow$ input $1 . . .4$ | -29 999 ... 999999 | 0 |
| $\begin{aligned} & \text { X1out. } \\ & 1 . . .4 \end{aligned}$ | Measured value correction output value Segment $1 \rightarrow$ input $1 . . .4$ | -29 999 ... 999999 | 0 |
| $\begin{aligned} & \times 2 \mathrm{in} \\ & 1 . . .4 \end{aligned}$ | Measured value correction input value Segment point $2 \rightarrow$ input $1 . .4$ | -29 999 ... 999999 | 100 |
| $\begin{aligned} & \text { x2out. } \\ & 1 . . .4 \end{aligned}$ | Measured value correction output value Segment point $2 \rightarrow$ input $1 . .4$ | -29 999 ... 999999 | 100 |

## Potentiometer connection and calibration

See chapter "calibration" $\rightarrow$ page 35

## III-11.6 RM_AO (RM200 - analog output module (No. 18))



Function RH _ AO handles the data from connected analog output modules.
Input and outputs

| Analog inputs |  |  |
| :---: | :---: | :---: |
| Slot. | Connection of one of the Slot. outputs of the RM 200 node (C_RM2x) |  |
| HO1...AO 4 | $1 \mathrm{st} \mathrm{to} \mathrm{4th} \mathrm{analog} \mathrm{output} \mathrm{signal}$ |  |
| Digital outputs |  |  |
| et-errr | $0=$ no engineering error detected | 1 = engineering error (several RM module functions on a slot) |
| slotid | $0=$ correct slot assignment | 1 = faulty slot assignment (wrong RM module fitted) |
| valid | 0 = no data | 1 = data could be received |
| $\begin{aligned} & \text { fail } 1 \\ & \text { fail } 4 \end{aligned}$ | Measurement error on channel 1 to 4 (e.g. sensor break) |  |

Parameter and configuration data

| Configuration | Description | Range | Default |
| :---: | :---: | :---: | :---: |
| HTEPR | Module type | $\begin{aligned} & \text { 0: RM231-0 }=4 \times 0 / 4 \ldots 20 \mathrm{~mA} / 4 \times 0 \ldots 10 \mathrm{~V} \\ & \text { 1: RM231-1 }=4 \times 0 / 4 \ldots 20 \mathrm{~mA} / 2 \times 0 \ldots 10 \mathrm{~V} / 2 \times-10 \ldots 10 \mathrm{~V} \\ & \text { 2: RM231-2 }=4 \times 0 / 4 \ldots 20 \mathrm{~mA} / 4 \times-10 \ldots 10 \mathrm{~V} \end{aligned}$ |  |
| $\begin{aligned} & \text { OTAF } 1 \\ & \text { OT: } 4 \end{aligned}$ | Output signal | $\begin{aligned} & \text { 10: standard signal }=0 \ldots 10 \mathrm{~V} \\ & \text { 11: standard signal }=-10 \ldots 10 \mathrm{~V} \\ & \text { 20: standard signal }=0 \ldots 20 \mathrm{~mA} \\ & \text { 21: standard signal }=4 \ldots 20 \mathrm{~mA} \end{aligned}$ |  |
| $\times 1$ $\times 64$ | Scaling start value input 1...input 4 | -29 999 ... 999999 | 0 |
| $\begin{array}{r} \times 161 \\ \times 1644 \\ \hline \end{array}$ | Scaling end value input 1 ... input 4 | -29 999 ... 999999 | 100 |

## III-11.7 RM_DMS (strain gauge module (No. 22))



Function RM_DMS reads data from a special strain gauge module of KS98-1 I/O extension with CANopen. Max. 2 strain gauges can be connected to the module. The measured values are available at outputs Al 1 and Al 2.

The two measurements can be influenced via digital command inputs, e.g. zero setting. Monitoring a new command ( positive flank at one of the digital inputs ) is restarted only when the "ready" output is " 1 ". The module position in the RM rack is determined by connection of analog input Slotx to the RM2xx node.

## Important hint:

A special coupler module ( RM201-1 ) must be used for operation of the strain gauge module. This coupler module cannot be combined with thermocouple modules. Moreover, the limitations as for coupler module RM201 (e.g. max. 4 analog input modules) are applicable.

## Digital inputs:

| Digital inputs: |  |
| :---: | :--- | :--- |
| set_t1 | Set tare strain gauge channel 1. The actual weight is not stored continuously as tare (packaging weight). The follow- <br> ing measurements provide the net weight. |
| res_t1 | Reset tare strain gauge channel 1. The tare value is set to 0. <br> Gross weight= net weight. |
| zero_1 | Zero setting of strain gauge channel 1 measured value. The actual measured value is stored as a zero value in a <br> non-volatile memory. |
| set_t2 | Set tare strain gauge channel 2. The actual weight is buffered as tare (packaging weight). The following measure- <br> ments provide net weight. |
| res_t2 | Reset tare strain gauge channel 2. The tare value is set to 0. <br> Gross weight=net weight. |
| zero_2 | Zero setting of the strain gauge channel 2 measured value. The actual measured value is stored as zero in the <br> non-volatile memory.. |


| Digital outputs: |  |
| :---: | :---: |
| Et-Er゙「 | 0 = no engineering error |
|  | 1 = engineering error (several module blocks at a slot output). slots not connected. |
| slotId | 0 = correct slot allocation |
|  | 1 = faulty slot allocation (module type). Faulty coupler module |
| Yalid | 0 = no data |
|  | 1 = data could not be received |
|  | fail 1 faulty connection or measurement error on channel 1 |
|  | fail 2 faulty connection or measurement error on channel 2 |
|  | ready ready message after command handling |

## Analog inputs:

connection of one of the slot outputs of the RM201-1-node block

## Analog outputs:

| $\overline{\mathrm{HI}} \mathbf{1}$ | 1st measured value of strain gauge channel 1 |  |
| :--- | :--- | :--- |
| $\overline{\mathrm{HI}}$ | $\mathbf{2}$ | 2nd measured value of strain gauge channel 2 |


| Parameters: |  |  |
| :---: | :---: | :---: |
| HT $-1 / 2$ | module type 0: RM225 = strain gauge |  |
| ST'rF 1/2 | 0: -4 +4mV/V |  |
| Urit 1/2 | $\mathrm{mV} / \mathrm{V}$ |  |
| Tf $1 / 2$ | filter time constant input $1 . . .2$ in (s) 0 ... $999999(0,5$ ) |  |
| x091/2 | scaling start value input $1 . . .2-29999 . . .999999(0)$ |  |
| $\begin{array}{ll}\text { x160 } & 1 / 2\end{array}$ | scaling end value input 1 ... 2-29999 ... 999999 | (100) |
| Fail 1/2 | signal action in case of sensor error <br> 0:upscale <br> 1:downscale |  |
| X1irı $1 / 2$ | measured value correction input value segment point $1>$ input $1 \ldots 2-29999 \ldots 999999$ |  |
| K1out $1 / 2$ | measured value correction output value segment point $1>$ input $1 \ldots 2-29999$... 999999 (0) |  |
| X2irı $1 / 2$ | measured value correction input value $\text { segment point } 2 \text { > input 1...2-29 } 999 \ldots 999999$ |  |
| K2out $1 / 2$ | measured value correction output value segment point $2>$ input 1...2-29 999 ... 999999 (100) |  |

## III-12 KS 98-1- KS 98-1 cross communication (CANopen)

Data exchange between KS 98-1 and RM200, KS800 or KS816 must be done exclusively via KS98-1.

## KS 98-1 RM

To every KS 98-1, even a slave, one or more RM nodes can be associated. But he can only access his own I/O.
Data exchange between several KS 98-1 of a CAN network is via send modules (CSEND; block numbers 21, 23, 25, 27) and receive modules (CRCV; block numbers $22,24,26,28)$.
Max. 9 analog values and 16 digital statuses from the relevant engineering can be transmitted per send/receive module. The sender sends the data together with its node address and block number.
The receiver checks, if the messages correspond with the adjusted send address, and if the sender block number is by " 1 " lower than its own one.


## III-12.1 CRCV (receive mod. block no's 22,24,26,28 (No.56))



Function CRCV can receive data from a different KS98-1. The data of the other multifunction unit are made available by means of the CSEND function. Hereby, the CSEND block number is by 1 lower than the CRCV block number.
CRCV no. 22 reads the data of another KS98-1 from CSEND no. 21
CRCV no. 24 reads the data of another KS98-1 from CSEND no. 23
CRCV no. 26 reads the data of another KS98-1 from CSEND no. 25
CRCV no. 28 reads the data of another KS98-1 from CSEND no. 27

## Outputs

| Analog outputs |  |  |
| :---: | :---: | :---: |
| Y1. . Y'Y | Analog output values 1 to 9 |  |
| Digital outputs |  |  |
| i ${ }^{\text {de®ror }}$ | 0 = correct node ld | 1 = faulty node Id |
| valig | 0 = no data | 1 = data could be received |
| $\begin{array}{cc}\square 1 \\ 0 & 16\end{array}$ | Status values 1 to 16 |  |

## Parameter and configuration data

| Configuration | Description | Range | Default |
| :---: | :--- | :--- | :--- |
| Nom I | Node address of the sending KS98-1 (The sending KS98-1 is adjusted accordingly in engineering tool window <br> "CANparameter ".) $\rightarrow$ see *1 |  |  |

* 1) The node address of the sending KS98-1 is adjustable in engineering tool window "CANparameter" or via the instrument parameters on the front panel (during off-line mode).




## III-12.2 CSEND (Send mod. blockno.'s 21, 23, 25, 27 - (No. 57))



Function CSEND provides data for other KS98-1 units on the CANopen bus. The data can be read by the other multifunction units using the CRCVfunction.

## Inputs and outputs

Analog inputs
K1. . . K9 $\quad$ Analog values 1 to 9, which are sent.

| Digital inputs |  |
| :--- | :--- |
| di1. . di 9 | Digital values 1 to 16, which are sent. |


| Digital output |  |  |
| :---: | :--- | :--- |
| v.al i $\ddagger$ | 0 = invalid data (e.g. no KS98-1 but only KS 98-1) | 1 = data could be received |

## Parameter und Konfigurationsdaten

| Configuration | Description | Range | Default |
| :---: | :--- | :--- | :---: |
| delt.a | Change from which a new send operation is started. | $0,000 \ldots 999999$ | 0,1 |

Transmission is at intervals of 200 ms .
Note that there is a risk of data loss for values which are available only during 100 ms .

## III-13 Connection of KS $\mathbf{8 0 0}$ and KS $\mathbf{8 1 6}$



Function blocks C_KS8x and KS8x can be used for communication of multifunction unit KS98-1 and multi-channel temperature controllers KS 800 and KS 816.
A node function C-KSBx is allocated to each KS 800 or KS816.
The $\mathrm{K} \mathrm{S} 8 \times$ functions are allocated to the various controllers of KS 800 (up to 8 controllers) or KS 816 (up to 16 controllers).
For BUS terminating resistor, see page 175

Partial engineering for communication with multiple channel temperature controllers KS800 and KS816
Fig. 28


## III－13．1 C＿KS8x（KS 800 and KS 816 node function－（No．58））



Node function $\mathrm{E}-\mathrm{KS} \mathrm{B} \times$ provides the interface to one of the multi－channel temperature controllers KS 800 or KS 816 ．
 800 （max． 8 controllers）or of KS 816 （max． 16 controllers）．

Unlike the other KS 98－1 functions，only one data function can be soft－wired to each analog output．
Prerequisite for communication of KS98－1 multi－function unit and KS800 or KS816 is the complying adjustment of the CAN parameters．（ $\rightarrow$ see＊1））．

## Outputs

## Analog inputs



| Digital outputs |  |  |
| :---: | :---: | :---: |
| こせージ「 | 0 ＝no engineering error | 1 ＝engineering error（different node function at the same KS800） |
| i』ージ「 | 0 ＝correct node | 1 ＝faulty node Id（no KS800／KS816 replied under the configured node ID） |
| Val i¢ | 0 ＝no data | 1 ＝data were received |
| orliヶに | $0=\mathrm{KS800} / 816$ is off－line | 1 ＝KS800／816 is on－line |
| f．ail 1 | $0=$ no fail at do1．．．do12 | 1 ＝fail at do1．．．do12 |
| fail 2 | $0=$ no fail at do13．．．do16 | 1 ＝fail at do13．．．do16 |
| fail 3 | $0=$ no heating current short circuit | 1 ＝heating current short circuit |
| di 1 | di1status |  |
| di2 | di2 status |  |
| di3 | di3 status |  |
| －i4 | di4 status |  |

Parameter und Konfigurationsdaten

| Configuration | Description | Range | Default |
| :---: | :--- | :---: | :---: |
| Fould | KS800／KS816 node address | $2 \ldots . .42$ | 2 |

The data from the various controllers are read cyclically．
Maximally at intervals of 1.6 seconds（KS800）or 3.2 seconds（KS816），all data are updated．
＊1）The parameters for the CANopen bus are adjustable in engineering tool window＂CANparameter＂or via the instrument parameters on the front panel（ET98 $\rightarrow$ Device $\rightarrow$ CANparameter）．

## III－13．2 KS8x（KS 800／KS 816 controller function－（No．59））



Each KS8x function handles a controller of KS 800 or KS 816 ．The analog and digital inputs can be used to send the control signals to the controller in KS800／16．The analog outputs provide the process and controller values．

## Inputs and outputs

| Analog inputs |  |
| :---: | :---: |
| C． X | Connection to one of the E1．．．－16 outputs of node function E－KSSx |
| 1.1 | Controller |
| Ym．arı | Correcting variable in manual mode |


| Digital inputs |  |  |
| :---: | :---: | :---: |
| ， m | $0=$ controller is in automatic mode | 1 ＝controller is in manual mode |
| E－${ }^{\text {aff }}$ | $0=$ controller is switched on | 1 ＝controller is switched off |
| w／w2 | $0=$ controller is in automatic mode | 1 ＝2nd is active（safety ） |
| w브나 | $0=$ external is active | 1 ＝internal is active |
| ostarot | 0 ＝don＇t start self－tuning | 1 ＝start self－tuning |


| Digital outputs |  |  |
| :---: | :---: | :---: |
| ミせージ「 | 0 ＝no engineering error | $\begin{aligned} & \begin{array}{l} 1 \text { = engineering error } \\ \text { (several KS8x controller functions on a controller channel) } \end{array} \end{aligned}$ |
| valid | 0 ＝no data | 1 ＝data were received |
| ＜f゙ョil | 0 ＝no sensor fail | 1 ＝sensor fail |


| Analog outputs |  |  |
| :---: | :---: | :---: |
| X | Controller process value |  |
| Y | Controller correcting variable |  |
| 5 t 1 | Statusbyte 1 | For an engineering example to evaluate St1 and St2，see the next page． |
| 5 t 2 | Statusbyte 2 |  |

St. 1 Statusbyte 1 Bit Value Description

| 0 | 1 | HH alarm |
| :--- | :--- | :--- |
| 1 | 2 | H alarm |
| 2 | 4 | L alarm |
| 3 | 8 | LL alarm |
| 4 | 16 | sensor fail alarm |
| 5 | 32 | heating current alarm |
| 6 | 64 | leakage current alarm |
| 7 | 128 | alarm DOx |

5.2 Statusbyte 2 Bit Value Description

| 0 | 1 | W2 active |
| :--- | :--- | :--- |
| 1 | 2 | Wint active |
| 2 | 4 | Wstart active |
| 3 | 8 | self-tuning active |
| 4 | 16 | self-tuning error |
| 5 | 32 | controller A / M |
| 6 | 68 | controller switched off |
| 7 | 128 | --- |

Engineering example for evaluationSt1/ St2


## III-14 Description of KS 98-1 CAN bus extension

There are various modes for KS 98-1 communication via the CAN bus. The unit can be master for handling the NMT services (NMT = Network ManagemenT), or slave, can send or receive PDOs (PDO = process data object) cyclically or send SDO telegrams asynchronously (SDO = service data object). A KS98-1 can contact any bus parties simultaneously with other KS98-1, allocated remote IOs, KS800 multi-controllers and up to 40 sensors or actuators, and via asynchronous telegrams. Max. 42 CAN nodes can be addressed.

KS 98-1 handles guarding tasks as a master or a slave with an own local RM node. Display is in the CAN status window. However, there are limits to the performance of the bus parties and the bus itself. The dynamic operations of the bus can be evaluated only by statistics. The resulting bus and interface load of an instrument is dependent on the details of the communication structure and can be estimated only, if the behaviour of the individual parties is known exactly. In the following, properties and effects of various bus parties are explained and figures and facts are presented. Information on the COB-IDs consumed internally at PMA is given in the annex. This information should be taken into account when adding instruments from other manufacturers.


## KS98-1 CAN communication features

Every message on the bus activates the KS 98-1 interrupt handler and loads the processor. The message is analyzed and queued, if the destination of the message is the own address. This queue is handled in the idle task and during the cyclical system processing phase (at intervals of 100 ms ).
$70 \%$ of the CPU capacity is reserved for the engineering. This time is considered as $100 \%$ in the KS98 ET timing dia logue. I.e. Min. 30 ms are available for general tasks and communication. Included are front and rear instrument inter face processing and Profibus handling. However, these loads are insignificant, because, for example, front and rear interface can only receive one telegram per 100 ms . This means that the CAN communication causes the largest part of the CPU load.
The PDO handling program is activated, as soon as the processing phase for the engineering within a cycle is finished (idle-task). Hence, more than $30 \%$ of the processor capacity may be available for CAN communication with small engineerings. The user can decide freely and at his own responsibility how to use these reserves can.

## Receive PDOs

The interrupt handler requires approx. 0,16ms for each PDO.
The event queues comprise $4 \times 80$ items. There is a queue for all send messages, another one for all PDO receive mes sages, still another one for the network receive messages and still another one for the SDO receive messages.
The queues are handled at intervals of 100 ms and during the idle task.
This means that no more than 80 PDOs per 100ms may be received.
The PDO handling is a processor load of approx. $1,2 \mathrm{~ms}$ for each individual PDO.
Blockwise handling of 50 receive PDOs takes KS 98-1 18 ms (19 ms, if the same number of PDOs for other receivers are rejected).
Although the load of the basic communication blocks (C_RM2X, CPREAD, ...) cannot be allocated to a time slot, it is assigned as a fixed value to the engineering portion automatically.

## Send PDOs

The load for transmitted PDOs is nearly the same as for receive PDOs (18ms / 50 PDOs), however, sending is not cyclical.
PDOs are sent only, when a value has changed (threshold adjustable with CSEND, otherwise, there will be a change of accuracy of the transmitted data format). At the latest after 2 seconds, the values are sent again also if unchanged. This reduces the output load by an unpredictable percentage. A filter can be used to reduce the transmission frequency of instable data.

## Estimation of CAN bus activities of various instruments

For reducing the data traffic between PMA instruments, PDOs are transmitted only in case of data changes. The changes are read with the accuracy of the used data format (LSB).

## KS800 communication

Both synchronous and asynchronous communication are used for KS800 communication. By configuration, one PDO is defined as synchronous and one PDO is defined as asynchronous.

## A Sync message is sent at intervals of $\mathbf{2 0 0} \mathbf{m s}$.

This is followed by reception of a PDO containing the data of one controller channel by each KS800/816 . I.e. refreshing of 8 channels takes 1,6 seconds.
The internal $\mathrm{KS} 800 / 816$ cycle for handling a controller channel is $63,5 \mathrm{~ms}$. If a channel status or correcting variable change occurs during this cycle time, KS800/81 sends 1 PDO asynchronously.

## RM 200

Data transmission in both directions is asynchronous. Data are transmitted only if changed (only the related PDOs). Checking, if changes were made is dependent on the accuracy of the data format (LSB). In both directions, the min. re fresh rate is 100 ms .

Max. 5 PDOs +1 status PDO are sent by the RM node dependent on the number of modules in the nodes.
Max. 5 PDOs are sent to the RM node by KS 98-1.

## KS98-1 cross communication

Data transmission is asynchronous. Data are transmitted only when changes occurred (only the related PDOs). The min. refresh rate is 200 ms .
Max. 5 PDOs are sent dependent on the quantity of data connected to CSEND.
Max. 5 PDOs are received by KS 98-1.

## Instruments from other manufacturers

Instruments from other manufacturers - sensors / actuators - can be addressed via synchronous data communication (send and receive PDOs), or using asynchronous data communication via SDOs. For reduction of the bus activities, checking for data changes is done by the sending side.
PDO reception can be influenced only by increasing the "Inhibit time" on the sensor side, in order to prevent informa tion from being sent more frequently than once per 100 ms (KS 98-1 calculation cycle). Received data bytes can be converted into the internal format flexibly using function block AOCTET. The operating principle of the block for the sending side is equal.
The receive and send interfaces (CPREAD/CPWRIT) are handled at intervals of 100 ms .


In block number range 21-40, max. 40 PDO addresses (COB-ID=Communication OBject Identifier: basic address + node address) can be addressed.
The data definition according to DS301 V4.0 complies with the Intel notation. The hearbeat protocol, which is offered by some manufacturers, is not supported.

Recommendation for safe operation:

Bus load limitation
$\leq 100$ telegrams / 100 ms , Baudrate ${ }^{3} 250 \mathrm{kbit} / \mathrm{s}=250 \mathrm{~m}$ distance

Limitation of PDOs handled in the unit $\leq 50$ telegrams / 100 ms (send/receive)
Send frequency for sensors ${ }^{3} 100 \mathrm{~ms}$ (inhibit time)

COB-ID allocation example for internal PMA CAN communication for node address 1:


## III-14.1 CPREAD (CAN-PDO read function (No. 88))



Function CPREAD is used for read access to instrument PDOs. Due to the normal quantity of min. 2 PDOs per instru ment, the data quantity of 2 PDOs 2 with 2 COB-IDs was grouped in one block.

Node address and COB-ID (CAN-OBject IDentifier) parameter setting is in the block. Moreover, node guarding for monitoring the CAN communication to the specified node can be switched on.
Data provided by the instrument must be interpreted according to the instrument specification.
Groups of 4 transmitted bytes can be converted into different data types.
For this purpose, a conversion function for converting and inverting 1 to 4 bytes into a parameterizable data type (see function AOCTET) is available.
Examples: $\mathrm{R} 1+\mathrm{R} 2>\operatorname{lnt} 16 / R 1+R 2+R 3+R 4>$ Long

Important note: The heart beat protocol is not supported. If an instrument can be operated only via "heart beat", the guarding function must be switched off.

## Digital inputs:

s.t.art. The function is active with the input not connected, or if start=1 is connected.

| Digital outputs: |  |
| :---: | :---: |
| slotict | = module correct |
|  | = module wrong |
| et-err | = no engineering error |
|  | = no CAN-HW (KS 98-1 type) multiple node monitoring |
| iderrr | $0=$ correct node id |
|  | 1 = faulty node id or instrument does not reply specify own node ID as "Nodeld" no free receive PDOs (RPDO) |
| Valid | Bit follows node status with the node guarding active ( $0=$ "preoperational", $1=$ "operational") always 1 with node guarding switched off |


| Analog outputs: |  |
| :---: | :--- |
| F11 - . R1 B | 1st to 8th analog input value in byte format (8-bit) for COB-ID 1 |
| R21. . R28 | 1st to 8th analog input value in byte format (8-bit) for COB-ID 2 |


| Configuration parameters (can be changed only during OFFLINE): |  |
| :--- | :--- |
| Nodeld | CAN node address |
| Guard | node guarding off/on |
| COBID1 | decimal ID of the first CAN object identifier |
| COBID2 | decimal ID of the second CAN object identifier |

## III－14．2 CPWRIT（CAN－PDO write function（No．89））



Function CPWRITE is used for write access to instrument PDOs．Because of the normal quantity of min． 2 PDOs per in－ struments，the data quantity of 2 PDOs 2 with 2 COB－IDs was grouped in a block．

Node address and COB－ID（CAN－OBject IDentifier）parameter setting is in the block．Moreover，node guarding for mon－ itoring the CAN communication to the specified node can be switched on．
Data sent to the instrument must be interpreted according to instrument specification．Groups of 4 transmitted bytes represent different data types．
To provide the bytes according to the required data type，a conversion function for transforming the value in the engi－ neering into 1 to 4 bytes is available（see function AOCTET）．
Examples：R1＋R2＞Int16／R1＋R2＋R3＋R4＞Long
Important note：The heart beat protocol is not supported．If an instrument can be operated only via＂heart beat＂，the guarding function must be switched off．

| Digital inputs： |  |
| :---: | :--- |
| s．ar．t． | The function is active，unless the input is connected，or if start＝1 is connected． |


| Digital outputs： |  |
| :---: | :---: |
| slotid | 0 ＝module correct |
|  | 1 ＝module wrong |
| こせージ「 | $0=$ no engineering error |
|  | 1 ＝no CAN－HW（KS 98－1 type）multiple node monitoring |
| i®－®「「 | 0 ＝correct node id |
|  | 1 ＝faulty node id or the instrument does not reply own node ID was specified as <br> ＂Nodeld＂no free send PDOs（TPDO） |
| Valid | bit follows the node status with the node guarding active （ $0=$＂preoperational＂， $1=$＂operational＂）always 1 with the node guarding switched off |


| Analog outputs： |  |  |
| :--- | :--- | :--- |
| $\mathrm{R} 11 \quad \ldots . \mathrm{R} 1$ | 8 | 1st to 8th output value in byte format（8－bit）for COB－ID 1 |
| R 2 | $1 . \ldots \mathrm{R} 2$ | B |


| Configuration parameters（can be changed only during OFFLINE）： |  |
| :--- | :--- |
| Nodeld | CAN node address |
| Guard | node guarding off／on |
| COBID1 | decimal ID of the first CAN object identifier |
| COBID2 | decimal ID of the second CAN object identifier |

## III-14.3 CSDO (CAN-SDO function (No. 92))



Function CSDO permits access to the CAN bus by means of SDOs (Service Data Objects). SDOs are used for asynchronous data exchange without real-time inquiry.

Transmission started by the trigger input is always confirmed by the receiver, possibly during data inquiry along with value transmission. Reception of the confirmation is indicated by a logic 1 at the "ready" output. A new command can be generated via the positive flank at trig only with " 1 " indicated by the "ready" output.-

Data required for command generation can be adjusted as parameters or connected as values to the inputs. As soon as a connection at an input was made, the relevant parameter looses its function. In this case, the value applied to the input is valid. Data (command) addressing in the connected instrument is done via indexes (index / sub-index), which is described in the CAN instrument documentation.

A value to be transmitted is connected to X 1 writ (or parameter "value"). A received value is output at Y 1 read. Y 1 read is set to 0 after power-on, after an error ( "err" = 1 ) and after a data output.

With RM modules provided in the KS 98-1 engineering, and for addressing the same nodes also via a CSDO block , the trigger should be interlocked with the valid bit of the RM-200 block. During access to RM nodes which are handled al ready by KS 98-1 in the background, there may be start-up collisions the consequences of which are removed only by restarting KS 98-1.

Important note: The heart beat protocol is not supported. If an instrument can be operated only via "heart beat", the guarding function must be switched off.

## Digital inputs:

r/w $\quad$ access mode : $0=$ read, $1=$ write

| Analog inputs: |  |
| :---: | :---: |
| Node | decimal CAN-nodeaddress, $1 . .42$ <br> (KS 98-1 is the CAN Object Identifier according to CiA DS301, node ID +600H) |
| D-Type | datatype of the connected value, $0 . .6$. Following datatypes are available: <br> 0 : Uint8 <br> 1: Int8 <br> 2: Uint16 <br> 3: $\quad \operatorname{lnt} 16$ <br> 4: Uint32 <br> 5: $\quad \operatorname{lnt} 32$ <br> 6: Float |
| Sublnd | address in object directory $1 . .255$ |
| Index | address in object directory $1 . .65535$ |
| X1writ | data value (-29999 ... 999999) |


| Digital outputs: |  |
| :---: | :---: |
| Err | 0 = no error |
|  | 1 = error detected. |
| regary | 0 = transmission is being handled. So far, no confirmation was received. |
|  | 1 = transmission completed. Ready for the next command. |

## Analog outputs:

| T1 | $1 . . . T 1$ | $\mathbf{8}$ | 1st to 8th analog output value in byte format (8-bit) for COB-ID 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| T2 | $1 . . . T 2$ | $\mathbf{8}$ | 1st to 8th analog output value in byte format (8-bit) for COB-ID 2 |


| Parameters (can be changed during operation): |  |
| :---: | :---: |
| Access | access mode: $0=$ read, $1=$ write |
| Nodeld | decimal CAN node address,1.. 42 <br> (KS98-1 forms the CAN Object Identifier according to CiA DS301, node ID + 600H) |
| D-Type | data type of the connected value, $0 . .6$. The following data types are available <br> 0 : Uint8 <br> 1: $\ln$ 8 <br> 2: Uint16 <br> 3: $\quad \operatorname{lnt} 16$ <br> 4: Uint32 <br> 5: $\quad \ln t 32$ <br> 6: Float |
| Sublnd | address in object directory 1.. 255 |
| Index | address in object directory $1 . .65535$ |
| Wert | data value-29999 ... 999999) |

## Possible errors (on output err):

- Faulty KS 98-1 hardware. KS98-1 CAN expected.
- The trigger input is not connected.
- No reply or faulty reply from the instrument.
- Instrument replies an inquiry with an error message.
- Min. one parameter or connected value is out of limits.


## Engineering examples

## SDO for data reading

Fig. 29


This example shows a possibility for data reading via an SDO access. Node address, data type, index and sub-index can be adjusted on an operating page. On the first line, a trigger bit which is reset by the following "ready" signal of the SDO block can be set. The engineering cannot be used to put a connected instrument into "operational" condition for PDO accesses. For this purpose, NMT commands must be used ( see the example given below ).

## SDO for data read/write with node guarding and set operational

In this engineering example for data write and read via SDOs, a trigger can be set automatically when changing a va lue to be transmitted, or manually via the first line of the operating page. Function block CPREAD, which is used nor mally for reading PDOs can be used to realize node guarding for an adjustable node. Moreover, this block ensures that the selected node is set "operational". In this case, connecting the "valid" output on the AND gates may be purposeful to prevent triggering as long as the connected instrument is not ready for addressing.

Fig. 30


## Generating an SDO command sequence

Engineering example SDO-SEQ.EDG shows the generation of an endless SDO command sequence. The values for D-type, sub-index, index and value are stored in the recipe blocks. The counter ( COUN ) counts from 1 to 15 continuously.

Fig. 31


An extended engineering for advanced users SDO-SE02.EDG shows further functions and possibilities of KS 98-1 engineerings in conjunction with command sequences.

Fig. 32


This partial engineering shows the possibility of access to SDO block parameters via an operating page.

Fig. 33


This partial function monitors the change of settings on the operating page and starts a pulse (value change) for stora ge in the recipe blocks.

Fig. 34


Command triggering is subject to various conditions: when reading, after changing during manual mode and cyclically in automatic mode.

## III-15 Programmer

## III-15.1 APROG ( analog programmer (No. 24)) / APROGD ( APROG data (No. 25))



## General

An analog programmer comprises a programmer (APROG) and min. one data block (APROD or APROGD2 ), whereby output DE l IEk of the APROGD/APROGD2 is connected with input DEl 1 owk of the APROG.
By connection of several of these cascadable functions (each with 10 segments), a programmer with any number of re cipes with any number of segments can be realized. APROGD and APROGD2 may not be mixed within a recipe.
Limiting is only in the number of available block numbers and in the calculation time.

The data block (APROGD or APROGD2) has an analog output, at which the own block number is made available.
This information is read-in by the programmer and used for segment data addressing. If an error with segment data ad dressing is detected, the reset value is output (status display on operating page: 'Er-ror-s').
After an engineering downlaod, S•••• is output (reset).
If r-sro is not connected, $\mathbf{E t - O F}$ is used.

Fig． 35


## APROG

| Digital inputs（APROG）： |  |  |
| :---: | :---: | :---: |
| hide | Display suppression（with i ide $=1$ the page is not displayed in the operation）． |  |
| lowt | Adjustment blocking（with locke 1 the values are not adjustable by means of keys $\boldsymbol{\Delta} \boldsymbol{\nabla}$ ）． |  |
| －${ }^{\text {－}}$ | Program stop／run（ 0 ＝stop， $1=$ run ） | reset has highest priority |
| reset． | Program continue／reset（ $0=$ continue， 1 ＝reset ） |  |
| Freset． | Program preset（ 1 ＝preset） |  |
| Se．ar＊品 | Start programm search run（ 1 ＝search ） |  |
| F－show | Program editing enabled |  |
| halt． | Program interruption（e．g．due to an exceeded bandwidth detected outside the programmer）． <br> $0=$ program not halted <br> 1 ＝program halted |  |
| Mヨケヶ「「こe | Manual mode disabled $0=$ switchover to manual mode not permitted $1=$ switchover to manual mode is permitted |  |


| Digital outputs（APROG）： |  |
| :---: | :---: |
| －－－ | Status program stop／run（0＝program stop ； 1 ＝program run） |
| 「－゙こご． | Status program reset（1＝program reset） |
| Erod | Status program end（1＝program end reached） |
| fker | Status 圆 key／interface function｀fkey＇（：pressing key 圆 causes switch－over（0 or 1）） |
| Freset | This output indicates a programmer preset operation．With a single preset command，a pulse is output for the duration of one cycle（dependent on the time slot in which the programmer is clas－ sified）．If the programmer is held in preset continuously，this output is always active． $0=\text { no preset status }$ <br> 1 ＝APROG stands in preset status |
|  | This output indicates the progrmmer manual mode． $0=$ APROG works in automatic mode <br> 1 ＝APROG works in manual mode |

## Analog inputs（APROG）：

| F＇Set． | Preset value for program |
| :--- | :--- |
| DElock | Block number of 1st data function ‘APROGD＇ |
| Prosido | Required program number（recipe） |
| XUヨl | Value for search run |
| SlavHo | SlavNo： <br> Block number of a connected slave block（for coupling master and slave blocks（APROG or DPROG） |


| Analog outputs (APROG): |  |
| :---: | :---: |
| AF- | Programmer |
| TVEtto | Net program time ( $\Sigma$ Trun) |
| TBrett | Gross program time ( $\Sigma$ Trun $+\Sigma$ Tstop) |
| TRest. | Programmer rest time |
| Ser ${ }^{\text {¢ }}$ | Actual segment number |
| WErnu | End value of actual segment |
| Frosko | Actual program number (recipe) |
| Segrest. | Remaining segment time |
| Bl- | Own block-number (e.g. for coupling master and slave blocks) |


| Parameter APROG | Description |  | Range | Default |
| :---: | :---: | :---: | :---: | :---: |
|  | Change mode: | Ramp Ramp - - . . . . . Step Siesto | RamF Step | $\leftarrow$ |
| Priode | Preset Mode: | Preset to segment <br> ' Preset to time | Fros.t.ime Pres. seg. | $\leftarrow$ |
| TFr-io | Start mode in search run | Gradient has priority Segment/time has priority | Grad. Frio Time Frio | $\leftarrow$ |
| DF | Decimals for setpoint |  | $0 . .3$ | 3 |
| Recriax | Max.recipees |  | $1 . .99$ | 99 |
| Sroubue | Smode (search mode): | $\begin{aligned} & \hline 0=\text { search run in segment } \\ & 1=\text { search run in program/section } \\ & 2=\text { no search run } \end{aligned}$ |  |  |
| WFeV | Program at reset |  | -29999 ... 999999 | 0 |
| W61 | Untere Sollwertgrenze |  | -29 999 ... 999999 | -29 999 |
| W160 | Obere Sollwertgrenze |  | -29 999 ...999 999 | 999999 |

APROGD

| Analog inputs (APROGD): |  |
| :--- | :--- |
| DBloUk | Block number of cascaded data function `APROGD’ |

Analog outputs (APROGD):

| DEl 1 ロuk | Own block number |
| :--- | :--- |


| Parameter | Description | Range |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| APROGD |  | ET | Unit | ET | Unit |
| TF 1 | Time for segment 1 (11) | $0 . . .59999$ | 10:10...999:59 | OFF | --: -- |
| $W_{F} 1$ | Segment end in segment 1 | -29999 ... 999999 |  | 0 | $\boxed{\square}$ |
| TF 2 | Time for segment 2 (11) | 0 ... 59999 | 6: 010...999:59 | OFF | --: -- |
| WF 2 | Segment end in segment 2 | -29999 ... 999999 |  | 0 | 0 |
| - . - |  |  |  |  |  |
| TF 10 | Time for segment 10 (1) | $0 . . .59999$ | 10:10...999:59 | OFF | --: -- |
| WF 10 | Segment end in segment 10 | -29999 | ... 999999 | O | $\underline{0}$ |

Enter the time for a segment in seconds or minutes into the engineering tool dependent of configuration ( T $\mathbf{L}$ Entry into the unit is in Hrs:Min or Min:Sec. In addition to the range, a switch-off value can be entered (ET: OFF/-32000; unit: --: --). When reaching a segment with a switch-off value, 'Eris' is output.

## APROGD2

## Analog inputs (APROGD2):

DBlouk
Block number of cascaded data function `APROGD'
Analog outputs (APROGD2):
DElouk $\quad$ Own block number

| Parameter <br> APROGD2 | Description | Value Range <br> ET | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- |



## Cascading

Cascading APROGD/APROD2 function blocks permits realization of a programmer with any number of segments. The segment sequence is dependent of the APROGD/APROD2 function block wiring ( $\rightarrow$ see below ). The block numbers are without signification related to the order. Segment parameters from right to left in the data blocks

Fig. 36 Example of an analog programmer with $n$ segments


## Recipes

Analog output 'Prosㅇor', at which the actual recipe number is output, and one or several SELV2 function blocks can be used to select a recipe the block number of which is switched to the APROG input ( $\rightarrow$ see below40). Selection of the required recipe is possible via analog input 'Proshor or recipe number, which can be entered via operation/interface.
Recipe switch-over (new Fr © $\mathcal{F} \mathrm{Ho}$ ) is effective only after programmer reset.
Entry of the recipe number via operation/interface is possible only, if analog input Frosion is not connected.

Fig. 37 Example of an analog programmer with 3 recipes à 20 segments


Max. 800 ms after switching over, the block number of the first parameter block of a new recipe must be applied to the Dblock input. In a cascade, the SELV2 blocks must be arranged in ascending order.

## Recipe changing - program selection

Whilst a program is active, switching over to a different recipe on the programmer operating page is not possible. Re cipe changing is possible only in reset status!

## Recipe names

By linking TEXT blocks to the ProgNo input, display of recipe names rather than of recipe numbers is possible.
Fig. 38 Recipe names


This procedure can be used for both internal and external recipe selection. With external recipe selection, the required recipe number must be applied to the index input of the TEXT block next to the APROG block (block 102 in this example). This recipe number is fed to the ProgNo input of the programmer. With internal recipe selection (via operation or level 1 interface data), the index input of the text block need not be connected.

## Operation preparation and end position

Each program starts at an initial position $\mathbf{W} \mathbf{F} \cdot \mathbf{0}$, which is used and maintained with reset or first programmer set-up. With program start from rest position, the first programmer segment runs from the instantaneous process value at the time of start command („ramp" with gradient (Wp1-Wp0) / Tp1). With step change mode, the of the first segment is activated immediately.

At program end, either

- $0=$ Stop: the of the last segment is maintained $(\rightarrow$ see below ),

Fig.: 39 Profile with stop at end position


- 1=reset:or the programmer goes to rest position $\mathbf{W} \mathbf{F}(\rightarrow$ see below $)$ and restarts automatically, if run is still valid.

Fig. 41 Profile with automatic reset at program end


- 2 = reset + stop: Programmer goes to rest condition $\mathbf{W} \mathbf{F}$ ©
 of operating page and interface). This is required to bring the slave block to the end status safely with a segment pre set.


## Start

The programmer uses a common start Wp0 for all programs. However, using an individual start for a recipe is possi ble as follows:
Use the of the 1st segment of each program as start value.
Set the relevant segment time (Tp1) to 0.
Set the search run parameter Smode to 'Search run in program sections'. Now, the search run is not limited to the 1st segment and program start at the process value in the 2nd segment is possible (see search run, page -> marking(SS)).

If each recipe shall have a separate reset (WpO), function blocks REZEPT and VPARA can be used as shown up 40. Note the calculation order (APROG $\rightarrow$ REZEPT $\rightarrow$ VPARA).

Fig. 40 Recipees with separate starting setpionts


## Halt status

Used e.g. for bandwidth monitoring
The halt status can be switched on and off only via the halt control input. Unlike the stop status, the run status remains unchanged (run output remains active) in the halt status.
Status display is "halt".

## Automatic/manual operation

The programmer can operate both in automatic or in manual mode:
automatic: The effective is determined by the programmer.
manual: The effective can be altered via programmer operating page or via interface. However, the program continues running and can be influenced via control inputs and operation/interface as during automatic mode (run/stop/re set/preset/search).

- When switching over from automatic $\Rightarrow$ manual, the effective remains at the last value which was effective before switching over.
- Manual $\Rightarrow$ automatic switchover: The effective changes from the manual to the actual programmer .
- Switching over can be done via the programmer operating page ("automatic" <>. "manual") or via interface.
- The automatic/manual mode displayed only via the digital manual output.
$0=$ automatic
$1=$ manual
- The "manfree" control input can be used to enable switchover.
$0=$ switchover to manual is disabled
$1=$ switchover to manual is enabled


## Programmer control via key

Programmer control is possible by means of digital function block inputs, status changing on the operating page, inter face and also using key $\frac{0}{0}$. For selection of the 윤 key functionality, a configuration parameter is offered:

FKey: $0=$ toggle bit changes at each key pressure at output fkey
$1=\mathrm{F}$ key function with pulse at output fkey
2 = F key controls the programmer (fkey output generates a pulse when a key is actuated)

Hereby, the rule that the statuses at connected control inputs have priority over the operation is applicable. The following diagram describes the status sequence dependent on the actions:

Fig. 42 Statusdiagram of the programmer and the effect of the function key


## Change mode (ramp/step)

If the shall change in a step or ramp is determined by a parameter ( fault: ramp).
Ramp: The changes linearly from the start (end value of previous segment) to the end value of the relevant segment in time $\mathbf{T F}$. For the first segment, the following gradient is applicable: ( $\mathbf{W} \mathbf{F} \cdot \mathbf{1}-\mathbf{W} \mathbf{F} \cdot \mathbf{1}) / T F \mathbf{1}$

Step: The goes to value $\mathbf{W}_{\mathbf{F}}$ immediately at segment start and maintains it during segment time $\mathbf{T F}$.

Fig. 43


## Segment types

Different segment types for each individual segment can be determined separately in data block APRGD2.
Like the APROGD, the APRGD2 block contains the parameter for 10 segments. Apart from parameters and time, APRGD2 has the segment type as a third parameter. I.e. the following basic segment types are possible within a program:

- Time segment with target and segment time
- Gradient segment with target and gradient
- Hold segment with hold time
- Step change segment with and segment time

Two variants of all segment types are available: with and without wait status at the segment end.
Segments with wait status feature particularities which must be taken into account:

- A segment of this type does not limit the search run over several segments (see search run on page -> Page 211).
- Behaviour after a short power failure ( $\leq 0.5$ Std.) with configuration PwrUp $=2$ (continue at actual time): If the program time from power failure to power recovery includes min. one segment with wait status at the end, the search run in the segment in which the program would be without power failure is omitted and the program stops at the first wait status without search run.
- As with the APROGD block, the recipe end is determined by switching off a time parameter (TP=off) or by a DBLOCK input which is not connected any more.
- When connecting the APRGD2 block to the DBLOCK input of APROG, the new segment types are used automati cally. The setting of parameter WMode is ignored when using the APRGD2 block.
- Mixing APROGD and APRGD2 blocks in a recipe is not permitted. However, a programmer can be operated with both data block types as long as only one parameter block type per recipe is used.


## Program sequence changes

During the running program, $s$ and times (online) can be changed. Moreover, further segments, which did not exist so far, can be added. The actual segment number remains unchanged. Unless the actual segment is changed, the relative elapsed time also remains unchanged.
$\square$ Past changes
A change of values and times of the past (already elapsed segments) are only effective after re-start (after previous reset).
$\square$ Future changes
Changes of the future (segments which are not reached so far) are immediately effective. With changes of segment lines, the „rest time" is re-calculated automatically.
$\square$ Present changes
Changes of the actual segment time, which mean a return into the past (e.g. segment time TF reduction to lower values than the relative time which has already elapsed in this segment) cause a branch to the start value of the next segment.
Changes of the destination value of the actual segment cause unique re-calculation of the segment gradient for this program run, in order to reach the new destination value in the remaining time. Final re-calculation of the segment gradient is when starting a new batch (reset and start) or with preset to an earlier time.

## Search run

In the following cases，a search run is carried out：
－Start via operation
－Start via interface
－Start with se．ヨトロート＝ 1
－Program start after 「ごことも．


## Search run in program segment

When starting the search run， $\mathbf{W}_{\mathbf{F}}$ is set to the $\mathrm{KU} \mathrm{\Xi l}$ value，from where it runs towards the segment end value with

 ment point next to the search value（actual segment start／end）．With segment start value＝segment end value（seg－ ment without gradient；holding time），the program is continued at the segment start．
With a step segment（including the APROGD segments with WMode $=1$（step）），the relevant target setpoint is al－ ways used from the segment start．

Search run forTFrios＝Zeit．Prio


## Search run forTFrios＝Grad．Prio



Search run in program section
Apart from the search run in the actual segment as described above，searching over several segments or search run switch－off are possible．The various search run functions can be selected via parameter SMode：
－ $0=$ search run in segment
－ 1 ＝search run in program section
－ 2 ＝no search run
Searching is limited to a section of several segments which have the same polarity sign as their gradient．Hereby，a hold segment is neutral $\Rightarrow$ no change of polarity sign．

As the throughput times with a search run dependent on the number of segments may be very long, searching is limited to several time slots so that searching is done only in one segment per time slot.

A search run is done in the following cases :

- Search run at program start: search over several segments up to the next gradient change
- search run started via control input, interface or via operation: forward and backward search from the actual program point to the next gradient change
 re to the next gradient change
- Search run after power failure at $\mathbf{F}_{\mathbf{w}} \mathbf{\mathbf { w } ^ { - } \mathbf { U } _ { \mathbf { F } } = 2}=2$ forward and backward search from the program time in which the program would be without power failure until the next gradient change
- Search run in the hold segment (Gradient $=0$ ): A search run is done only if there is min. one further seg ment (except hold segment) in this section. With a further hold segment directly before or behind this segment, the search run takes place only in the actual segment.

Search run at TPrio = 1 (time priority): The search run is limited to the actual segment, i.e. the runs from the actual process value to the segment end value within the actual remaining segment time.
Segments with wait status at the end do not limit the search range, exept it's the search run after voltage failure!
A search run may lead to program termination.

## Analog programmer operating page

Analog programmer APROG has an operating page, which can be selected in the operating page menu with input 'hide' not connected.
If the FB inputs (function block inputs) allocated to the input fields in the following table are assigned to the enginee ring, operation (change) of this input field is not possible.
(1) Name of programmer block
(2) Recipe name:
(3) Process value
(4) Segment number
(5) Status ( $\mathbf{r} / \mathbf{w}$ ) automatic/manual
(6) Block change
(7)
(8) Segment start and end value
(9) Remaining segment time
(10) Program net time
(11) Remaining program time
(12) Status (r/w) stop, run reset, search, program, quit, error
(13) Status (r) halt, end

Fig. 44


Run, reset, preset and search are concerned, see following table:

| Input field |  | Operation | Display | FB input |
| :---: | :---: | :---: | :---: | :---: |
| Header |  | Selection of slave block | Display of slave data | : - |
|  |  | Operating mode selection | abtor or manusal | - : |
| Eetwoint. |  | Automatic: programmer, Manual mode: operator setting in input field | Active | - : - |
| Rec |  | If input $\mathrm{Prog} \boldsymbol{\mathrm { Ho }}$ o is wired, entering of the desired recipe number is not possible over the frontside! | indicates the actual recipe number. | Prosto |
| Se• |  | If control input Freset. is wired, entering the desired segmentnumber is not possible over the frontside! | indicates the actual segment number | Freset. |
| tNetto |  | Entry of required programmer time (preset to time) | indicates the 『ーㄴำ time total (without pause) | Freset |
| t-Rest. |  | No operation possible | indicates the time until program end |  |
| St.atus | Stop | Stop the programmer | programmer stopped |  |
|  | r-un | Start the programmer | the programmer was started |  |
|  | reset. | The programmer is switched to segment 0 and's.t.or' | the programmer is switched to segment 0 and' $=$ t.op: | reeset |
|  | -suit | Leave the field without change |  |  |
|  | Frosrem | direct adjustment of segment parameters | segmentparameter |  |

## Notes related to the properties of the operating page

The display fields shown in bold and underlined letters on the picture above mark the elements which are switched over when changing to a slave page (see sections Master/slave operation on page 215).
The remaining fields continue indicating statuses and values of the master page.
Recipe name:
Recipes can be selected in the reset status. Unless a user text (TEXT block at ProgNo input) is provided, 'Ree $n$ ' is displayed ( n stands for the current recipe number).

- The process value is visible only with the process value input connected.
- The segment number is adjustable only with preset to segment.
- The can be adjusted only during manual mode.
- Display of the remaining segment time is suppressed with preset to segment (e.g. with digital slave programmers).
- The program net time is adjustable with preset to time.
- 3 statuses are displayed (partly adjustable, dependent on operating status):
- Status left: automatic / manual (adjustable)
- Status middle: halt / end (unless one of the two statuses is active, this display is omitted)
- Status right: stop / run / reset / search / program / quit / error


## Direct programmer adjustment

Program s and segment times can be adjusted at the operating page directly via the instrument front panel, without calling up the parameter level. Direct access to parameter setting is enabled with control input F-EFous = ,1" set at the function blocks of programmer APROG and DPROG.
 mation, all segment parameters $\mathbf{T F}_{\mathbf{F}}$ and $\mathbf{W}_{\mathbf{F}}$ pertaining to an effective recipe Fiec can be displayed and adjusted in a scroll window (Fig. ). Return to the normal operation is with Erio.

Scrolling is done over several data blocks (APROGD, APROGD2, DPROGD). "n" segment parameter (Wpn, Tn) indexing is with 3 digits. The segment parameters are distributed to the concerned data blocks automatically from left to right with ascending index (Fig. ).
If the last segment time Tn is adjusted to a valid value, the next parameter $\mathrm{Tn}+1$ is displayed automatically. $=\mathbf{-} \mathbf{:} \mathbf{- -}$ etc.

Thus an actual program can also be reduced by setting Tn+1. = -- : -in the required position. The following segments are suppressed in the program sequence.
However, the relevant segment parameters remain unchanged and are made effective again by entry of a valid value at the relevant point (Fig. 45).

See chapter $\rightarrow$ page 38

The programmer adjustment via the main menu parameter level remains possible. In this case, however, each data block APROGD, APRGD2 or DPROGD must be selected separately. But parameters W1区以 (adjustment limits) [im (decimal points) which pertain to the APROG are not effective when entering.

Recipe names used via text blocks are displayed also on the editing page. By changing the recipe name, switching over to the display of another recipe is possible. This can be done at any time and does not cause changing of the acti ve recipe.

When using APRGD2 blocks, the following editing page is displayed.

Fig. 45


If an $X$ input of recipe switchover block SELV2 is not connected and the relevant recipe is selected nevertheless (should be disabled via the adjustment range of the recipe number), the following error display is output:

Fig. 48

## Progeramine ber*

Recert $=$ Rec 4
Wrade $=$
Error

## Access to parameters of inactive recipes

To enable the access to all recipes relevant for this programmer block from the programmer program edit page (inclu ding the inactive ones), the following wiring principle is compulsory:

Fig. 47


The SELV2 block switches the parameter block number onto the programmer Dblock input. Via the SELV2 block struc ture information, the programmer has access to all recipes.

Unless wiring is via SELV2, switchover to a different recipe on the parameter setting page is not possible, i.e. the reci pe cannot be displayed.

For active recipe switchover during reset status, another wiring type can be selected as well; however, at the latest 800 ms after switching over, the block number of the first parameter block of a new recipe must be applied safely at the Dblock input. The order of SELV2 block numbers plays an important part, in particular, if these blocks were assig ned to the 800 ms time slot. Unless the order is ascending, there will be an additional 800 ms delay at each cascade step.

## Master/slave operation

Programmers frequently consist of several coupled blocks which have a common time or segment structure (e.g. mas ter block: oven temperature, 1st slave block atmosphere/C level, 2nd slave block $1 . .6$ digital control signals). Such a programmer is provided with an operating page extending to all blocks in KS98-1. On the master operating page, the slave block data can be displayed via symbol

## Wiring

Synchronization of several programmers is by slave block preset coupling. The slave blocks are forced to the same time or to the same segment number via time or segment preset by the master.

Fig. 49 Programmer with two analog and one digital blocks


To facilitate operation of the coupled blocks, the programmer has a SlavNo input and a BI-no output. These are used by the slave block for transfer of the block number to the following block (see Fig 49). The block the Blo-no output of which is not connected (block 100 in this example) should operate as master. Its Tnetto or SegNo output is wired to the PSet input of further blocks.
 block operating page, access to the data (incl. parameters) relevant for the slave for display or adjustment is possible easily.

## Operation of a programmer with several blocks

## Calling up a master block operating page via the operating page menu (page survey):

When selecting the operating page of a master programmer via the operating page menu with master/slave wiring via $\mathrm{Bl}-\mathrm{no}>$ SlavNo as described above, changing between the relevant programmer blocks can be done easily via the - symbol The order is determined by the wiring order (in the above example: $100 \Rightarrow 101 \Rightarrow 102 \Rightarrow 100 \Rightarrow \ldots$ ).

However，changing to the next programmer block is not complete．Only some of the values and texts（e．g．title）relevant for the next block are displayed．The remaining elements continue indicating only the master information（see analog programmer operating page）．
In case a change to the operating page menu（page survey）is made in this condition of the operating page，the block selection remains unchanged．I．e．when calling up the master block again later，the data of the slave block indicated last are displayed．

## Display information which is firmly assigned to the master block：

Recipe name（can be switched over in reset state）
Program net time（adjustable for Preset to time ）
Remaining program time
Status display for halt／end
Status display for stop／run／reset／search／program／quit／error（adjustable）

## Display information of the actual programmer（master or slave）：

Programmer block name
Process value
Segment number（adjustable for preset to segment only with master）
Actual or actual control bits（both adjustable in manual mode）
Segment start and end value
Remaining segment time
Status display for automatic／manual（adjustable，if permitted via manfree input）
As only the master shall decide upon the change of an active recipe，the wiring structure must be of such kind that changing is effective also for all relevant slave blocks（master ProgNo output $\Rightarrow$ slave ProgNo input，see above dia－ gram）．This kind of master／slave coupling permits only a central recipe change for all blocks coupled accordingly．

Calling up a slave block operating page via the operating page menu（page survey）：
When calling up the operating page of a slave programmer via the operating page menu，display of symbol $>$ is
 not possible．Moreover，no data of the connected master are displayed．

To prevent inadmissible adjustments（recipe selection，run／stop／reset）from being offered on a called up operating page，outputs ProgNo，run and reset of the master programmer should be wired to the relevant slave programmer in－ puts．For plant operation，slave programmer display is suppressed purposefully with hide＝1 when the page survey is active（PageNo at status block＝0）．

## Subordinated parameter page（program editing page）：

On the subordinated parameter page，recipe switchover is possible at any time．But switchover acts only on the recipe parameter display on this page rather than changing to the effective recipe．
Changing directly to the parameters of the next programmer is not possible．For this，the superordinate operating page of the corresponding programmer must be used．

## Programmers without coupling：

On an operating page with a function block which is not connected with other programmer blocks via Bl－トロー＞


## Remaining segment time

The remaining time of the actual segment is displayed on the operating page.
It is:

- readable via interface
- available as an additional analog output signal
- always 0 with reset
- suppressed with "preset to segment"


## Incompatibility to earlier KS 98 functionality

## Recipe switchover:

KS 98: The receipe number can be switched over at any time on the programmer operating page. However, the new se lected recipe will be effective only after the next reset. On the subordinated parameter page, switching over has the same effect.

KS 98-1: On the programmer operating page, the recipe number can be switched over only during reset status. Swit chover is effective immediately. On the subordinated operating page, switching over continues being possible at any time. Nevertheless, only the recipe to be displayed with its parameters is switched over. The instantaneously active re cipe remains unaffected.

## End behaviour with PEnd = 'stop':

KS 98: Program is at the end, status is 'run', reset command leads to an immediate re-start
KS 98-1: Program stands at the end, status is 'stop', the program remains in reset status after a reset command.

## Segment number at program end:

KS 98: At program end, the number of the last segment is displayed as segment number (SegNo output, operating page, interface).
KS 98-1: At program end, the number of the last segment +1 is displayed as segment number (SegNo output, opera ting page, interface), in order to bring also any slave programmer to the end status.

## III-15.2 DPROG ( digital programmer (No. 27)) / DPROGD (DPROG data(No. 28))



## General

A digital programmer comprises a programmer (DPROG) and at least one data block (DPROD), whereby output DBl ouk of DPROGD is connected with input DEl ouk of the DPROG. Connection of several of these cascadable functions (each with 10 segments) permits realization of a programmer with any number of recipes and any number of segments. Limiting is only in the number of available block numbers and calculation time.

The data block has an analog output, at which it provides its own block number. This information is read-in by the programmer and used for segment data addressing. When an error in the segment data addresses is found, the reset value is output (status display on operating page: Er- $\mathbf{r - o r}^{-1}$ ).
After an engineering download, Seg
Fig.:50 Digital programmer definition


## Inputs／outputs

| Digital inputs（DPROG）： |  |  |
| :---: | :---: | :---: |
| hide | Display suppression（withlide＝ 1 the page is not displayed in the operation）． |  |
| 100k | Adjustment blocking（with $\mathbf{l}$ ■－k $=1$ the values are not adjustable by means of keys $\boldsymbol{\Delta} \mathbf{\nabla}$ ）． |  |
|  | Program stop／run（ $0=$ stop， $1=$ run ） | reset has highest priority |
| reset． | Program continue／reset（ $0=$ continue， 1 ＝reset ） |  |
| Freset． | Program preset（ 1 ＝preset） |  |
| 三e．arch | Start programm search run（1＝search ） |  |
| F－show | Program editing enabled |  |
| halt． | Program interruption（e．g．due to an exceeded bandwidth detected outside the programmer）． $0=$ program not halted $1=$ program halted |  |
|  | $\begin{array}{ll}\text { Manual mode disabled } & 0=\text { switc } \\ & 1=\text { switc }\end{array}$ | to manual mode not permitted to manual mode is permitted |


| Digital outputs（DPROG）： |  |
| :---: | :---: |
| －－－ | Status program stop／run（0＝program stop ； 1 ＝program run） |
| reeet． | Status program reset（1＝program reset） |
| Erod | Status program end（1＝program end reached） |
| fkey | Status 芧 key／interface function｀fkey＇（：pressing key |
| －1．．．dot | status of control outputs in the actual segment |
| Froeet | This output indicates a programmer preset operation．With a single preset command，a pulse is output for the duration of one cycle（dependent on the time slot in which the programmer is classified）．If the program－ mer is held in preset continuously，this output is always active． $\begin{aligned} & 0=\text { no preset status } \\ & 1=\text { APROG stands in preset status } \end{aligned}$ |
|  | This output indicates the progrmmer manual mode． $0=$ APROG works in automatic mode <br> 1 ＝APROG works in manual mode |

## Analog inputs（DPROG）：

| P＇Sot． | Preset value for program |
| :---: | :---: |
| DElouk | Block number of 1st data function｀APROGD＇ |
| Prosko | Required program number（recipe） |
| Sl ヨuto | SlavNo：Block number of a connected slave block（for coupling master and slave blocks（APROG or DPROG） |

## Analog inputs（DPROGD）：

| DE lowek | Block number of cascadable data function｀DPROGD＇ |
| :--- | :--- |


| Analog outputs（DPROG）： |  |
| :---: | :---: |
| THetto | Net program time（ $\Sigma$ Trun） |
| TErett．t． | Gross program time（ $\Sigma$ Trun $+\boldsymbol{\Sigma}$ Tstop） |
| Trest． | Programmer rest time |
| S․․카응 | Actual segment number |
| Frosㄱoro | Actual program number（recipe） |
| Segrest． | Remaining segment time |
| El－ヶロ | Own block－number（e．g．for coupling master and slave blocks） |

## Analog outputs（DPROGD）：

| DEl IOE | Own block number |
| :--- | :--- |

Parameter and configuration data

| Parameter DPROG | Description |  | Range | Default |
| :---: | :---: | :---: | :---: | :---: |
| Priode | Preset Mode： | Preset to segment <br> ＇Preset to time | Pres．t．ime Pres．ee． | $\leftarrow$ |
| Recrlax | Max．recipees |  | $1 . .99$ | 99 |
| DV］ | Status of control outputs 6．．．1 with reset |  | $0 / 1$ per output | 000000 |


| Parameter DPROGD | Description | Range <br> ET | Unit | Default ET | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TF 1 | Time for segment 1 (1)) | 0 ... 59999 | 6: 010..999:59 | OFF | --:-- |
| D 1 | Status of control output values in segment 1 (2)) |  | per output | 000000 | 6166160 |
| TF 2 | Time for segment 2 (1) | 0 ... 59999 | 6: 010..999:59 | OFF | --: |
| D 2 | Status of control output values in segment 2 (2)) | 0/1 | per output | 000000 | 616160 |
|  |  |  |  |  |  |
| TF 10 | Time for segment 10 (1)) | $0 . . .59999$ | Q: 001..999:59 | OFF | --:- |
| D 10 | Status of control output values segment 10 (2) | 0/1 | per output | 000000 | 6066106 |

 whereas entry into the unit is in Hrs:Min or Min:Sec. In addition to the range, a switch-off value can be entered (ET: OFF/-32000; unit: --: --). When reaching a segment with a switch-off value, 'Erid' is output.

With entry of control values in the engineering tool, the first digit before the decimal point corresponds to control output 1 (do1), the second digit before the decimal point corresponds to control output 2 (do2) etc. Entries behind the decimal point are interpreted as 0 . Leading zeros are deleted.


| Configuration DPROG | Description |  | Value |
| :---: | :---: | :---: | :---: |
| F'ur-IF | Behaviour after mains recovery | Continue program (default) 'Search run in the actual segment , Continue at actual time | $\begin{aligned} & \text { Fros. Fort } \\ & \text { Forticer } \end{aligned}$ |
| FErab | Behaviour at program end PEnd: $\begin{aligned} 0 & =\text { Stop } \\ 1 & =\text { Reset } \\ 2 & =\text { Reset }+ \text { Stop (End-condition is reset with stop) } \end{aligned}$ | 'stop after program end ddefault) . . R Reset after program end | $\begin{aligned} & \text { Stor } \\ & \text { Reset. } \end{aligned}$ |
| T6ו- | Time unit | ```TTime = hours : minutes (default) , Time = minutes: seconds``` | $\begin{aligned} & \text { Starim } \\ & \text { Min: } \end{aligned}$ |
| FK゙ㄹ. |  |  |  |

## DPROG functions

All functions effective with the digital programmer are mentioned on the following list. As the procedure is almost completely identical for the analog programmer, we refer to the description in the corresponding APROG chapter.

Data blocks are cascadable I (like APROG, $\rightarrow$ page )
Program selection (like APROG, $\rightarrow$ page 221)
Progam changes during an active recipe (like APROG, $\rightarrow$ page )
Access to parameters of inactive recipes (like APROG $\rightarrow$ page )
Programmer control via key 융 (like APROG, $\rightarrow$ page 208)
Halt status (like APROG, $\rightarrow$ see page 208)
Automatic/manual mode with adjustability of control bits (like APROG, $\rightarrow$ page 208)
Recipe changing during reset status (like APROG $\rightarrow$ page 221 )
Recipe names via TEXT block coupling (like APROG, $\rightarrow$ page )
Program end behaviour (like APROG, $\rightarrow$ page 206)
Master/slave operation (like APROG, $\rightarrow$ page 215)
Remaining segment time on the operating page and as output signal (like APROG, $\rightarrow$ page 218)
Operating page elements like for the APROG (with display of control blocks and relevant block number, $\rightarrow$ page 212)

## Digital programmer operating page

Digital programmer DPROG has an operating page, which can be selected in the operating page menu with input 'hide' not connected. For changing the value of an entry field, this value must be marked using $\boldsymbol{\Delta} \boldsymbol{\nabla}$ (inverse display). When acknowledging the value with $\square$, it starts blinking and can be adjusted with $\Delta \boldsymbol{\nabla}$. When reaching the required value, it must be acknowledged with $\square$. If the FB inputs assigned to the input fields (function block inputs) in the following table are allocated to the engineering, operation (change) of this input field is not possible.
(1) *Program block name
(2) Recipe name: recipe can be switched over in reset status
(3) Segment number: adjustable with segment preset
(4) *automatic / manual (adjustable)
(5) *Page changing: permits switching to an analog or digital page connected by block coupling. This switchover type applies only to the values marked with *. The remaining display elements invariably show the master programmer values.
(7) Control bit
(8) *Control bits: can be altered individually in manual mode.

Fig. 51

(9) Remaining segment time: display is suppressed with preset to segment (e.g. with digital slave programmers). Otherwise the invariable overall segment time would be displayed.
(10) *Program net time: adjustable with preset to time
(11) Remaining program time
(12) Programmer status stop / run / reset / program / quit / error
(13) halt / end (if none of the two conditions is active, this display remains empty)

## DPROG program edit page

Like the analog programmer, changing from the operating page to the subordinated parameter page is done by setting the status text shown at the bottom right to 'program' (possible only with p-show = 1 ). Display includes recipe name, the 6 start control bits and the segment parameters of the instantaneously active recipe.

Switchover to display of a different recipe is by changing the recipe name. This is possible at any time and does not cause switchover of the active recipe.
(1) Name of program block
(2) Recipe name: Recipe changing is possible at any time .
(3) Control bit status in reset mode
(4) Time for segment 1
(5) Control bit status in segment 1
(6) Time for segment 2
(7) Control bit status in segment 2
(8)

Fig. 52


## III-16 Controller

General: Function blocks CONTR and CONTR+ and PIDMA provide a complex control function. Unlike CONTR, CONTR+ includes six selectable control parameter sets. However, PIDMA provides a special control algorithm and different self-tuning.
In the following sections, the main features of the functionblocks CONTR, CONTR+ together and PIDMA separately are described. Then the common controltechnical application ranges are explained.

## III-16.1 CONTR (Controllerfunction with one parameterset (No. 90))

The CONTR block provides a PID controller with numerous functions such as ramp, internal/external/W2 switchover, /process value tracking, self-tuning, override control, feed-forward control, positioning signal forcing, ratio and three-element control in 12 different controller types (continuous/2-point/3-point/3-point stepping/ ...).

(1) Page title (block name)
(2) source (Wint, Wext, W2)
(3) Physical unit
(4) Bargraph of correcting variable Y or XW or Xeff
(5) Entry into the optimization page
(6) Effective process value
(7) Controller
(8) Value of correcting variable Y or XW or Xeff
(9) Optimization/command input status
(10) Optimization result heating
(11) Process characteristics heating
(12) Optimization result cooling

(13) Process characteristics cooling

## III-16.2 CONTR+ (Controllerfunction with six parametersets (No. 91))

Function block CONTR+ provides the same functionality as the CONTR block. Additionally, it permits adaptation by adjustment. Six parameter sets can be activated dependent on process criteria (process value, , correcting variable, control deviation), plant or batch characteristics. The parameter sets can be determined independently by self-tuning.


## Inputs／outputs for CONTR and CONTR＋

| Digital inputs： |  |
| :---: | :---: |
| hide | Display suppression（with hide $=1$ the operating page is not displayed）． |
| lock | Adjustment locking（with lock $=1$ the values are not adjustable by means of keys ID）． |
| inc． | Increment for manual adjustment |
| dec | Decrement for manual adjustment |
| $\times \mathrm{f}$ | Sensor error $\times 1 . . . \times 3$ |
| \＃F f | Sensor error Yp |
| 3／919 | $0=$ automatic $1=$ manual |
| W／W2 | $0=$ int．／ext． $1=$ W 2 |
| werwi | $0=$ external $1=$ internal |
| Fi／F | $0=$ Pl action；$\quad 1=\mathrm{P}$ action 1 ）（r page PI／P switch－over）（not applicable to PIDMA） |
| d oue | 1 ＝override control＋with 3－point stepping controller（r page ff）（not applicable to PIDMA） |
| d oue－ | $1=$ override control－with 3 －point stepping controllerl r page ff）（not applicable to PIDMA） |
| track | $0=$ tracking function off； $1=$ tracking function on（r page ，，） |
| －1\％ 2 | $0=$ output value $\mathrm{Y} 1=$ output value Y 2 |
| Off | $0=$ controller switched on $1=$ controller switched off |
| Sm／him | $0=$ soft manual $1=$ hard manual |
| ost．ar－t． | 1 ＝self－tuning start r page |
| witop | 1 ＝effective freeze |
| ar off | 1 ＝gradient suppression |
| restart． | 1 ＝Start the ramp r the makes a step change towards the process value and goes to the adjusted process value according to GRW＋（GRW－）．The rising flank（Or1）is evaluated． |
| o－hide | 1 ＝self－tuning page display suppression |
| OFlock | Blockage of key H（with oplock＝ 1 ，switchover to manual by means of key H is not possible）． |


| Diqital outputs： |  |
| :---: | :---: |
| 1 | Status of switching output Y1； $0=$ off $1=0$ n |
| $\because 2$ | Status of switching output Y2； $0=$ off $1=0$ n |
| c fail | 1 ＝controller in error handling |
| off | $0=$ controller switched off $1=$ controller switched on |
| $\mathrm{a} / \mathrm{m}$ | $0=$ automatic $1=$ manual |
| －1／ 42 | $0=$ output value $\mathrm{Y} 1=$ output value Y 2 |
| werwi | $0=$ external 1 ＝internal |
| Fi／F | feedback／integrator $0=$ with $1=$ without（ $n$ ot applicable to PIDMA） |
| －「じい | Self－tuning running |
| 0 ¢t．eb | Process at rest（for self－tuning）（not applicable to PIDMA） |
| O err | Error during self－tuning |
| XW SuF． | Alarm suppression with change |


| Analog inputs： |  |
| :---: | :---: |
| $\times 1$ | Main variable $\times 1$ |
| $\times 2$ | Auxiliary variable x 2 e．g．for ratio control |
| $\times 3$ | Auxiliary variable $\times 3$ e．g．for 3 －element control |
| Wext． | External |
| OUC＋ | Override control＋r page |
| Ouc－ | Override control－r page |
| YF | Position feedback |
| Yhim | Output with hard manual |
| Yada | Feed－forward control |
| P：ar－ No | Only with CONTR＋；required parameter set |
| Cese | Cascade input for controller cascade |


| Analog outputs: |  |
| :---: | :---: |
| Weff | Effective |
| X | Effective process value |
| Y | Effective output value |
| X W | Control deviation |
| W | Internal |
| Yout 1 | Output value yout1 (heating) |
| Yout.2 | Correcting variable yout2 (cooling; only with continuous controller with split-range behaviour r CFunc= splitRange) |
| Fiartoo | Only with CONTR+; effective parameter set |
| Bl-no | Own block number |

## III-16.3 Parameter and Konfiguration for CONTR, CONTR+

## Parameter for CONTR and CONTR+

| Parameter | Description |  | Description | Default | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| W_EWlouk | switchover disable function | Switchover is disabled via front-panel operation | 0: block All | $\leftarrow$ |  |
|  |  | Wext $\leftrightarrow$ Wint switchover is disabled | 1: block We |  |  |
|  |  | $\mathrm{W} \leftrightarrow \mathrm{W} 2$ switchover is disabled | 2; block W2 |  |  |
|  |  | All switchover functions are enabled | 3: none |  |  |
| W61 | Min. limit (Weff) |  | -29999...999999 | 0 | $\underline{0}$ |
| W160 | Max. limit (Weff) |  | -29999... 999999 | 100 | 1616 |
| W2 | Additional setpoint |  | -29999...999999 | 100 | 1616 |
| Crow | Gradient plus unit/min |  | 0,001...999999 | Off |  |
| Grow | Gradient minus unit/min |  | 0,001...999999 | Off | ---- |
| Grow ${ }^{3}$ | Setpoint gradient for W2 unit/min |  | 0,001...999999 | Off |  |
| 1+61 | Zero offset for ratio control |  | -29999... 999999 | 0 | $\underline{\square}$ |
| a | Factor a for 3-element control + setpoint ramps |  | -9,99...99,99 | 1 | 1 |
| X $\mathrm{SF}^{2}$ | Trigger point separation (stepping controller) |  | 0,2...20,0\% | 0,2 | 0,2 |
| TFLIIS | Min. positioning step time (stepping controller) |  | 0,1...2,0[s] | 0,3 | E, 3 |
| TM | Actuator response time (stepping controller) |  | 5...999999 [s] | 30 | 30 |
| XSG1 | Switching difference (signaller control) |  | 0,10...999999 | 1 | 1 |
| LW | Distance additional contact (signaller control) |  | -29999...999999 | Off |  |
| 8 x 2 | Switching difference additional contact (signaller control) |  | 0,10...999999 | 1 | 1 |
| X $\mathrm{Bl} 1^{12}$ | Trigger point separation (PD) (3-point controller) |  | 0,0...1000,0[\%] | 0 | $\underline{\square}$ |
| x | Trigger point separation (PD) (3-point controller) |  | 0,0...1000,0[\%] | 0 | $\square$ |
| Y2 | Additional correcting variable (not for stepping controllers) |  | -105,0...105,0[\%] | 0 | 0 |
| Ymin | Min. correcting variable limiting (not for stepping controller) |  | -105,0...105,0[\%] | 0 | $\underline{0}$ |
| Ymax | Max. correcting variable limiting (not for stepping controller) |  | -105,0...105,0[\%] | 100 | 1610 |
| Y6 | Working point of the controller (not for stepping controller) |  | -105,0...105,0[\%] | 0 | [10] |
| Yertm ${ }^{4}$ | Positioning value during process at rest |  | -105,0...105,0[\%] | 0 | $\underline{\square}$ |
| -Yopt ${ }^{\text {4 }}$ | Self tuning step height |  | 5...100[\%] | 100 | 1610 |
| FQFt ${ }^{\text {a }}$ | Only for CONTR+; parameter set to be optimized |  | 1... 6 | 1 | 1 |
| XF1 1... ${ }^{(1)}$ | Proportional band 1 |  | 0,1...999,9[\%] | 100 | 16 E |
| XF2 1...6 ${ }^{\text {P }}$ | Proportional band 2 (three-point and split range) |  | 0,1...999,9[\%] | 100 | 10 0 |
| Tr 1... 6 | Integral action time ( $\mathrm{Tn}=0 \rightarrow$ I-part is not effective) |  | 0,0...999999[s] | 10 | 19 |
| TV 1...6 | Derivative time (Tv = $0 \rightarrow$ D-part is not effective) |  | 0,0...999999[s] | 10 | 1010 |
| TF1 1...6 | Cycle time heating (2-and 3-point controller) |  | 0,4...999,9[s] | 5 | 5 |
| TF2 1...6 | Cycle time cooling (3-point controller) |  | 0,4...999,9[s] | 5 | 5 |

1) \%-specifications are related to measuring range $x_{n 0} \ldots x_{n 100}$
2) The neutral zone $x_{\text {sn }}$ for 3-point stepping controllers depends on $T_{\text {puls }}, T_{m}$ and $x_{p 1}(\rightarrow V$. Hints for self-tuning $)$.
3) Gradient control $\rightarrow$ page 261
${ }^{4)}$ Self optimization $\rightarrow$ page 242 ff

Configuration data CONTR，CONTR＋

| Configuration | Description |  | Values | Default |
| :---: | :---: | :---: | :---: | :---: |
| CFunc | Control behaviour： | Signaller 1 output | $\frac{51-101}{1}$ |  |
|  |  | Signaller 2outputs 2－point control er |  |  |
|  |  | ［ 3 －point controller（heàting／cooling switching） | Spoint |  |
|  |  | 3－point controller（heat．continuous／cool．switching） | Cont |  |
|  |  | 3－point controller（heat．switching／cool．cotinuous） | SwiTCont |  |
|  |  | Triangle－star－off（d／$/$－oiff） | 2F－DSO |  |
|  |  | 3－point stepping controller | St，er |  |
|  |  | L＿－point－stepping controlier with pos．feedodack Yp －Continuous controller | Ster＋YF <br> Gont |  |
|  |  | Continuous controller with splitrangeoperation | FFFitRon |  |
|  |  | ＇Continuous controller with position feedback $\bar{Y}$ p | Cont ${ }^{\text {P／}}$ |  |
| CTimpe | Controller type | ，Standard controller $\rightarrow$＿page | standard |  |
|  |  | Ratio controller ${ }^{\text {a }}$ | Ratio |  |
|  |  | 3－element controiler $\rightarrow$ page $2 \overline{6} 7$ | S－elem |  |
| WFunc | function | control $\rightarrow$ page |  |  |
|  | function | ：／cascade control $\rightarrow$ page | ＇Sp／c．esc |  |
| CMode | Output action | I Inverse output action | Inverse |  |
|  | Output action | Direct output action | Direct． |  |
| coiff |  | Xw differentiation |  | $\leftarrow$ |
|  | Differentiation | X differentiation |  |  |
| CFail | Behaviour with sensor error | NNeutral | Heutrol |  |
|  |  | $\square^{\text {Ypid }}=$ Ȳmin $(0 \%)$ | Mrin |  |
|  |  | Ypid $=$ Ymax（100\％） | Max |  |
|  |  |  |  |  |
|  |  |  |  |  |
| Cove | Output limiting | ＇No override control | ＇Off | $\leftarrow$ |
|  |  | Override control $\pm$ | OUC＋ |  |
|  |  | Override controo－ | Ow－ |  |
|  |  | ＇Override control $+\bar{\prime}$ | Ouctome |  |
| WTreas | Int．tracking | No tracking of Wint |  |  |
|  |  | 「 träking | EFFrabk |  |
|  |  | －Process value tracking | PU－t．rack |  |
| Ratio | Ratio | （ $\times 1$ 1 N 0$) / \times 2 \rightarrow$ page 2667 | Tupre 1 |  |
|  | controller |  | TTEP易 |  |
|  | function： |  | Tispe 3 |  |
| WDF | Digits behind the decimal point（process value） |  | 0．．． 3 | 0 |
| Disf | Contents of bargraph line： | Output variable | U | $\leftarrow$ |
|  |  | Controldeviation |  |  |
|  |  | －Xeff | 可f |  |
| OMode | Self－tuning mode： |  | St．andard | $\leftarrow$ |
|  | Condition for | grad $=0$ | ar：ad＝ |  |
| acond | process at |  |  |  |
|  | rest： | ，grad $>0$－ |  |  |
|  | Span start |  | －29999 ．．． 999999 | 0 |
| 8n100 | Span end |  | 29999999999 | 100 |
| SFac | Factor stoichiom． | ratio | 00199.99 | 100 |

## III-16.4 Control behaviour

The following chapter describes the different control behaviours adjustable with the configuration parameter CFUNC and determines the parameters effective then.
All available parameters can be adjusted in the engineering tool. However it is not recognizable, which of the adjusted values are really affectingthe process.
The following compilation shall help to enlighten, which parameters are really used, dependent from the adjusted con troller type. Therefore the relevant parameters for control behaviour are accented grey in the tables

## Signaller, 1 output

The signaller is suitable for processes with small $\mathrm{T}_{\mathrm{u}}$ and low $\mathrm{v}_{\text {max }}$.


The advantage is in the low switching frequency. Switch-on is always at a fixed value below the , switch-off is always at a fixed value above the .
The control variable oscillation band is determined as a result of :
$X_{0}=X_{\max } \cdot \frac{T_{u}}{T_{g}}+X_{S d}=V_{\max } \bullet T_{u}+X_{S d}$
The signal function corresponds to limit signalling, whereby the is the limit value. The trigger point is symmetrical to the ; hysteresis $X_{\text {sd1 }}$ is adjustable.

Fig.: 53
Static operating principle of the signalling function of a signaller, 1 output


| Configuration | Effective controller parameters of a signaller with one output |  |  |
| :---: | :---: | :---: | :---: |
| CFunc: <br> signaller, <br> 1 output | W61 | Lower limit for Weff | -29 999 ... 999999 |
|  | W160 | Upper limit for Weff | -29999 ... 999999 |
|  | W2 1) | Additional | -29 999 ... 999999 |
|  | Growt 2) | gradient plus | off / 0,001 ... 999999 |
|  | Grow- 2) | gradient minus | off / 0,001 ... 999999 |
|  | Gr-w2 2) | gradient for W2 | off / 0,001 ... 999999 |
|  | 1+61 | Zero offset (only effective with ITTeFe=ratio controller) | -29 999 ... 999999 |
|  | 3 | Factor a (only effective with C ('EFE=3-element control) | -9,99 ... 99,99 |
|  | XSol 1) | Signaller switching difference | 0,1 . . 999999 |
|  | Titel | Title of controller page (only display) | 16 characters |
|  | Eirib. | Process value unit (only display) | 6 characters |
|  | Wint. | Internal after transmission of the engineering to KS 98-1 | -29999 ... 999999 |

[^4]
## Signaller, 2 outputs

The signaller is suitable for processes with small $T_{u}$ and low $v_{\max }$.


The advantage is in the low switching frequency. Switch-on is always at a fixed value below the , whereas switch-off is always at a fixed point above the .
The control variable oscillation band is determined as a result of :
$X_{0}=X_{\max } \cdot \frac{T_{u}}{T}+X_{S d}=v_{\max } \bullet T_{u}+X_{S d}$
The signalling function provides alarm signalling, whereby the is the limit value. The trigger point is symmetrical to the ; hysteresis $\mathrm{X}_{\text {sd1 }}$ is adjustable.
The signaller with two outputs has an additional "limit contact". Its difference from the is adjustable in parameter LW (including polarity sign).

Fig.: 54
Static operating principle of the signalling function
Signaller, 2 outputs

Lbl is shown as a negative value in the example (e.g. -20)


| Configuration | Effective controller parameters of a signaller with two outputs |  |  |
| :---: | :---: | :---: | :---: |
| CFInce = <br> Signaller, <br> 2 outputs | W60 1 1) | Lower limit for Weff | -29 999 ... 999999 |
|  | W160 1) | Upper limit for Weff | -29999 ... 999999 |
|  | W2 1) | Additional | -29999 ... 999999 |
|  | Cirw+ 2) | gradient plus | off / 0,001 ... 999999 |
|  | Cirw- 2) | gradient minus | off / 0,001 ... 999999 |
|  | 「irwz 2) | gradient for W2 | off / 0,001 ... 999999 |
|  | H61 | Zero offset (only effective with $\mathbf{C T}$ T- $-\mathrm{F} \cdot \mathbf{E}=$ ratio controller) | -29999 ... 999999 |
|  | $\cdots$ | Factor a (only effective with CT T- | -9,99 ... 99,99 |
|  | \%sod 1) | Signaller switching difference | 0,1 ... 999999 |
|  | LW 1) | Trigger point separation of additional contact OFF $\triangleq$ the additional contact is switched off | $\begin{gathered} -29999 \ldots 999999 \\ -32000=0 F F \end{gathered}$ |
|  | \%sd2 1) | Switching difference of additional contact | 0,1 ... 999999 |
|  | Titel | Controller page title (only display) | 16 characters |
|  | Einh. ${ }^{\text {W }}$ | Unit of the process value (only display) | 6 characters |
|  | Wint. | Internal after transmission of the engineering to KS 98-1 | -29999 ... 999999 |

1) The values are specified in the process value unit - e.g. [ ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$, bar, \%, etc.]
2) The rate of change must be specified in units / minute (e.g. $\left.{ }^{\circ} \mathrm{C} / \mathrm{min}\right) \rightarrow$ see gradient control page 261.

## Two-point controller

Switching controller with two switching statuses:


1. Heating switched on; $\quad \rightarrow$ output $\mathrm{Y} 1=1$
2. Heating switched off; $\quad \rightarrow$ output $\mathrm{Y} 1=0$
E.g. for temperature control with electrical heating (inverse operation) or cooling (direct operation)

Adjust cycle time Tp1 as follows: $\mathrm{Tp} 1<=0,25 \bullet \mathrm{Tu}$
With higher Tp1, oscillations must be expected. Tp1 corresponds to the minimum cycle time (time in seconds) at $50 \%$ duty cycle.

Fig.: 55
Static operating principle of a two-point controller


## PD action

( $\mathrm{Tr}^{\mathrm{I}}=0 \triangleq$ switched off $\mathrm{Tn}=\infty$ )
The working point is in the middle of proportional band $X_{p 1}$ at $50 \%$ duty cycle. In order to keep the control variable constant, a defined quantity of energy dependent of is required. This energy causes a permanent control deviation, which increases with growing $X_{p 1}$.

## DPID action

By means of the I action, line-out is without permanent control deviation.
The static characteristic of a two-point controller is identical to the one of a continuous controller, with the difference that a duty cycle instead of a linearly variable current signal is output (relay contact, logic signal 0/20mA or control output 0/24V).

Working point $Y_{0}$ and cycle time Tp 1 at $50 \%$ are adjustable.
The shortest switch-on or switch-off time is 100 ms .

| Configuration | Effective controller parameters of a two－point controller |  |  |
| :---: | :---: | :---: | :---: |
| CFLnc <br> ＝ <br> 2－F＇urkt． | Fort． | Parameter set for self－tuning（only with CO | 1．．．6 |
|  | W包 1） | Lower limit for Weff | －29 999 ．．． 999999 |
|  | W160 1） | Upper limit for Weff | －29 999 ．．． 999999 |
|  | W2 1） | Additional | －29 999 ．．． 999999 |
|  | Cr－w＋2） | gradient plus | off／0，001 ．．． 999999 |
|  | Gr－m－2） | gradient minus | off／0，001 ．．． 999999 |
|  | Gr－w2 2） | gradient for W2 | off／0，001 ．．． 999999 |
|  | 1 H | Zero offset（only effective with $\mathbf{C T}$ T 9 Fe＝ratio controller） | －29999 ．．． 999999 |
|  | $\square$ | Factor a（only effective with $\mathbf{C T} \mathbf{T}$－ $\mathbf{F}$－$=3$－element control） | －9，99 ．．．99，99 |
|  | Y2 | Additional correcting variable | $0 \ldots 100$［\％］ |
|  | Yrin | Min．correcting variable limiting | $0 \ldots 100$［\％］ |
|  | Ymax | Max．correcting variable limiting | $0 \ldots 100$［\％］ |
|  | Y込 | Correcting variable working point（start－up correcting variable） | 0．．． 100 ［\％］ |
|  | YOFtm | Correcting variable during process at rest（not with PIDMA） | 0．．． 100 ［\％］ |
|  | GYoFt． | Self－tuning step change height | 5．．． 100 ［\％］ |
|  | XF1（1．．6）3）4） | Proportional band 1 | 0，1 ．．．999，9［\％］ |
|  | Tr1（1．．．6）4） | Integral action time | 0 ．．． 999999 ［s］ |
|  | Tソ1（1．．．6）4） | Derivative action time | 0 ．．． 999999 ［s］ |
|  | TFi 1（1．．．6）4） | Cycle time heating | 0，4 ．．999，9［s］ |
|  | Titel | Title of controller page（only display） | 16 characters |
|  | Einh．$\times$ | Unit of the process value（only display） | 6 characters |
|  | Wint 1） | Internal after transmission of the engineering to KS 98－1 | －29999 ．．． 999999 |
|  | $\overline{\mathrm{H}} \cdot \mathrm{H}$ | Controller status after transmission of the engineering to KS 98－1 | 0 or 1 |

1）The values are specified in the process value units－e．g．$\left[{ }^{\circ} \mathrm{C}\right.$ ，${ }^{\circ} \mathrm{F}$ ，bar，\％，etc．］
2）Specifiy the rate of change in units／minute（e．g．$\left.{ }^{\circ} \mathrm{C} / \mathrm{min}\right) \rightarrow$ see gradient control page 261.
3）\％specifications are related to measuring range Xr1
4）（ $\mathbf{1}$ ．．． $\mathbf{G}$ ）refers to the six parameter sets of CONTR＋（e．g．Xp1，Xp2，Xp3．．．Xp6）．

## Three-point controller

Switching controller with three switching statuses:

1. Heating switched on; $\quad \rightarrow$ output $\mathrm{Y} 1=1, \mathrm{Y} 2=0$
2. Heating and cooling switched off; $\quad \rightarrow$ outputs $\mathrm{Y} 1=0, \mathrm{Y} 2=0$
3. Cooling switched on; $\quad \rightarrow$ outputs $\mathrm{Y} 1=0, \mathrm{Y} 2=1$
E.g. for temperature control with electrical heating (h) and cooling (c).


Fig.: 56
Static operating principle of a three-point controller

Adjust cycle time TFI 1 and TF:2 as follows:
$\mathrm{Tp} 1<=0,25 \cdot \mathrm{Tu}$ (h) $\mathrm{Tp} 2<=0,25 \cdot \mathrm{Tu}$ (c).


With higher $\mathrm{TF}_{\mathbf{F}}^{1 / T F \mathbf{Z}}$, oscillations have to be expected. Cycle times $\mathrm{TF}_{\mathbf{F}} \mathbf{1}$ and $\mathbf{T F} \mathbf{Z}$ are the minimum cycle times at $50 \%$ duty cycle.

## PD/PD action

( $\mathrm{Tr}_{\mathrm{r}}=0 \triangleq$ switched off $\mathrm{Tn}=\infty$ )
The positioning range reaches from $100 \%$ heating (Y1) to $100 \%$ cooling (Y2). The proportional bands must be adapted to the various heating and cooling power values. In order to keep the control variable constant, a defined amount of energy dependent of is required. This causes a permanent control deviation, which increases with growing $X_{p(1,2)}$.

## DPID/DPID action

By means of the I action, line-out without permanent control deviation is possible. Transition from trigger point 1 (heating) to trigger point 2 (cooling) is without neutral zone. The proportional bands must be adapted to the various heating and cooling power values.

Fig.: shows the static characteristic for inverse output action.
Direct/inverse switchover only causes exchanging of the outputs for "heating/cooling".
Expressions "heating" and "cooling" may also mean similar processes (dosing acid/lye, ...).
The neutral zone is adjustable separately for the trigger points $\left(X_{s h 1}, X_{\text {sh2 }}\right)$ i.e. it need not be symmetrical to the .
The type of positioning signals is selectable:
EFLinc: $=3$-point heating switching, cooling switching
EFLING = cont/switch heating continuous, cooling switching
EFI_ric: switch/cont heating switching, cooling continuous
Combination "heating continuous" and "cooling continuous" is covered by "splitRange - continuous controller with split-range behaviour". $\rightarrow$ see also "continuous controller" page: 238.

| Configuration | Effective controller parameters with three-point controller |  |  |
| :---: | :---: | :---: | :---: |
|  | Fort. |  | 1...6 |
| CFAnc: <br> 2-Punkt | W6 1) | Lower limit for Weff | -29 999 ... 999999 |
|  | W1616 1) | Upper limit for Weff | -29999 ... 999999 |
|  | W2 1) | Additional | -29 999 ... 999999 |
|  | Grow+ 2) | gradient plus | off / 0,001 ... 999999 |
|  | Girw- 2) | gradient minus | off / 0,001 ... 999999 |
|  | Growz 2) | gradient for W2 | off / 0,001 ... 999999 |
|  | 1-16 | Zero offset (effective only with $\mathbf{C}$ T P Fe=ratio controller) | -29999 ... 999999 |
|  | $\square$ | Factor a (effective only with $\mathbf{C T}$ T - F-E=3-element control) | -9,99 ... 99,99 |
|  | X x ¢1 3) | Neutral zone ( X w $>0$ ) | 0,0 ... 1000 [\%] |
|  | x x - 2 3) | Neutral zone ( X w < 0 ) | 0,0 ... 1000 [\%] |
|  | Y2 | Additional positioning value | $0 \ldots 100$ [\%] |
|  | Ymin | Min. output limiting | $0 \ldots 100$ [\%] |
|  | Ymax | Max. output limiting | $0 \ldots 100$ [\%] |
|  | Y-1 | Correcting variable working point (start-up corr. variable) | 0... 100 [\%] |
|  | YOFtm | Positioning value during process at rest | 0... 100 [\%] |
|  | -ropt | Step height during self-tuning | 5... 100 [\%] |
|  | XF'1(1..6) 3) 5) | Proportional band 1 | 0,1 ... 999,9 [\%] |
|  | YFZ 2 (1..6) 3) 5) | Proportional band 2 | 0,1 ... 999,9 [\%] |
|  | Tri(1..6) 5) | Integral action time | 0 . . 999999 [s] |
|  | Tu1(1..E) 5) | Derivative action time | $0 \ldots 999999$ [s] |
|  | TFP(1..6) 5) | Cycle time heating | 0,4 ... 999,9 [s] |
|  | TFR(1..6) 5) | Cycle time cooling | 0,4 ... 999,9 [s] |
|  | Titel | Title of controller page (only display) | 16 characters |
|  | Einh. ${ }^{\text {\% }}$ | Unit of process value (only display) | 6 characters |
|  | Wint. 1) | Internal after transmission of the engineering to KS 98-1 | -29 999 ... 999999 |
|  | $\stackrel{\mathrm{H}}{ }$ | Status of controller after transmission of the engineering to KS 98-1 | 0 or 1 |

1) The values are specified in the process value unit - e.g. $\left[{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}\right.$, bar, $\%$, etc.]
2) The rate of change must be specified in units/minute (e.g. $\left.{ }^{\circ} \mathrm{C} / \mathrm{min}\right) \rightarrow$ see gradient control page 261.

3) As default, value $Y$ min is set to 0 . In this case, output $Y 1$ cannot switch!
4) ( $\mathbf{1} \ldots \mathbf{6}$ ) refers to the six parameter sets of CONTR+ (e.g. Xp1, Xp2, Xp3...Xp6).

## $\Delta / Y / o f f$

The principle is identical to the control behaviour of a 2-point controller with additional contact.


Output $Y 2$ is used for switchover of the connected circuit between " $\Delta$ " and " $Y$ ". Output $Y 1$ switches the heating energy on and off.
E.g. for temperature control with electrical heating (inverse operation) or cooling (direct operation).

Cycle time Tp1 must be adjusted as follows: Tp1<=0,25• Tu With higher Tp1, oscillations must be expected. Tp1 corresponds to the minimum cycle time (time in seconds) at $50 \%$ duty cycle.

Fig.: 57
Fig. Static operating principle of the $\Delta / Y$ / off function


## PD action

## ( $\mathrm{Tr}_{\mathrm{I}}=0 \triangleq$ switched off $\mathrm{Tn}=\infty$ )

The working point is in the middle of the proportional band $X_{p 1}$ at $50 \%$ duty cycle.
For keeping the control variable constant, a defined amount of energy dependent of is required. This causes a perma nent control deviation, which increases with higher $X_{p 1}$.

## DPID action

By means of the I action, line-out without permanent control deviation is possible.
The static characteristic of a two-point controller is identical to the one of a continuous controller. The difference is that a duty cycle instead of a linearly variable current signal is output (relay contact, logic signal $0 / 20 \mathrm{~mA}$ or control output 0/24V).
Working point $\mathrm{Y}_{0}$ and cycle time Tp1 of the cycle at $50 \%$ are adjustable.
The shortest switch-on or off time is 100 ms .

| Configuration | Effective controller parameters with $\Delta / \mathbf{Y} /$ off controller |  |  |
| :---: | :---: | :---: | :---: |
| $\left\lvert\, \begin{aligned} & \text { CFInt }= \\ & \text { 2-P+Zusatz } \end{aligned}\right.$ | Fort. | Parameter set for self-tuning (only with COINTE+) | 1...6 |
|  | W60 1) | Lower limit for Weff | -29 999 ... 999999 |
|  | W1606 1) | Upper limit for Weff | -29 999 ... 999999 |
|  | W2 1) | Additional | -29 999 ... 999999 |
|  | Girw+ 2) | gradient plus | off / 0,001 ... 999999 |
|  | Girw- 2) | gradient minus | off / 0,001 ... 999999 |
|  | Grew2 2) | gradient for W2 | off / 0,001 ... 999999 |
|  | H61 | Zero offset (effective only with CType=ratio controller) | -29 999 ...999 999 |
|  | $\square$ | Factor a (effective only with CType=3-element control) | -9,99 ... 99,99 |
|  | LW 1) | Trigger point separation of additional contact OFF $\triangleq$ 亿 the additional contact is switched off | $\begin{gathered} -29999 . . . .999999 \\ -32000=0 \text { FF } \\ \hline \end{gathered}$ |
|  | Xed2 1) | Switching difference of additional contact | 0,1 ... 999999 |
|  | Y2 | Additional positioning value | $0 . . .100$ [\%] |
|  | Ymin | Min. output limiting | $0 . .100$ [\%] |
|  | YMex | Max. output limiting | $0 \ldots 100$ [\%] |
|  | Y区 | Working point of correcting variable (start-up correcting variable) | $0 . .100$ [\%] |
|  | YOFtm | Positioning value during process at rest | $0 . .100$ [\%] |
|  | dYort. | Self-tuning step height | $5 . .100$ [\%] |
|  | XF1(1..6) 3) 4) | Proportional band 1 | 0,1 ... 999,9 [\%] |
|  | Tril(1..6) 4) | Integral time | $0 \ldots 999999[s]$ |
|  | Tu1(1..6) 4) | Derivative time | $0 \ldots 999999[s]$ |
|  | TF1(1...6) 4) | Cycle time heating | $0,4 \ldots 999,9[s]$ |
|  | Titel | Title of controller page (only display) | 16 characters |
|  | Einh. X | Unit of process value (only display) | 6 characters |
|  | Wint 1) | Intemal after transmission of the engineering to K $\mathrm{S} 98-1$ | -29 999 ... 999999 |
|  | $\overline{\mathrm{H}} \sim \mathrm{H}$ | Controller staus after transmission of the engineering to KS 98-1 | 0 or1 |

1) The values are specified in the process value unit - e.g. [ ${ }^{\circ} \mathrm{C}$, ${ }^{\circ} \mathrm{F}$, bar, $\%$, etc.]
2) The rate of change must be specified in units/minute (e.g. $\left.{ }^{\circ} \mathrm{C} / \mathrm{min}\right) \rightarrow$ see gradient control page 261.

3) ( $1 \ldots$... refers to the six parameter sets of CONTR+ (e.g. Xp1, Xp2, Xp3...Хp6).

## Three-point stepping controller

Switching controller for control of a valve (e.g. temperature control by means of motorized valve and gas-air mixture)


1. Open valve; $\quad \rightarrow$ outputs $\mathrm{Y} 1=1, \mathrm{Y} 2=0$
2. Don't move valve; $\rightarrow$ outputs $\mathrm{Y} 1=0, \mathrm{Y} 2=0$
3. Close valve; $\quad \rightarrow$ outputs $\mathrm{Y} 1=0, \mathrm{Y} 2=1$

To validate the adjusted $\mathrm{X}_{p 1}$ for the actuator response time, response time $T_{m}$ must be adjusted. The smallest positioning step is 100 ms .

With PMA controllers the position feedback has no influence on the PID-behaviour!

Fig.: 58
Static operating principle of a three-point stepping controller


## Adjusting the neutral zone

Neutral zone $X_{\text {sh }}$ can be increased in case of excessive output switching. However, note that an increase the neutral zone will reduce the control sensitivity.
For this reason, we recommend optimizing switching frequency (actuator wear) and control sensitivity.

Three-point stepping controllers can be operated with or without position feedback Yp.
SGトritt. 3-point stepping controller
SurrittuF 3-point stepping controller with position feedback
whereby ${ }^{\mathrm{Y}} \mathrm{F}$ ' is not used for control. The static characteristic of a three-point stepping controller is shown in the figure above.

The hysteresis shown in this diagram is practically unimportant, but can be calculated from the adjustable min. pulse length $\mathrm{T}_{\text {puls }} \geq 100 \mathrm{~ms}$.
$X_{\text {sh }}=\frac{\text { Tpuls }}{2} \cdot 0,1 \cdot \frac{\mathrm{Xp}}{\mathrm{Tm}}$


$X_{\text {sh }}=12,5 \cdot \mathrm{Xp} \cdot \frac{\text { Tpuls' }}{T m}-0,75$

| Configuration | Effective controller parameters with three-point stepping controller |  |  |
| :---: | :---: | :---: | :---: |
| CFING: <br> Step <br> Step Yp | Fort. | Parameter set for self-tuning (only with $\mathrm{C}=\mathbf{0}+\mathrm{HTR}+$ ) | 1...6 |
|  | W60 1) | Lower limit for Weff | -29 999 ... 999999 |
|  | W160 1) | Upper limit for Weff | -29 999 ... 999999 |
|  | W2 1) | Additional | -29 999 ... 999999 |
|  | Gr- ${ }^{\text {Wr }}$ + 2) | gradient plus | off / 0,001 ... 999999 |
|  | Gr- ${ }^{\text {¢ }}$ | gradient minus | off / 0,001 ... 999999 |
|  | Gr-62 2) | gradient for W2 | off / 0,001 ... 999999 |
|  | -161 | Zero offset (effective only with CType=ratio controller) | -29999 ... 999999 |
|  | $\square$ | Factor a (effective only with CType=3-element control) | -9,99 ... 99,99 |
|  | Xsh 3) | Trigger point separation | 0,2 ... 20 [\%] |
|  | TFuls | Min. positioning step time | 0,1 ... 2 [s] |
|  | Tm | Actuator response time | $5 \ldots 999999[s]$ |
|  | Y2 | Additional positioning value (only with step $\mathrm{Yp} \rightarrow$ with position feedback) | $0 \ldots 100$ [\%] |
|  | YOFtm | Positioning value during process at rest (not with PIDMA) | 0... 100 [\%] |
|  | GYoFt. | Self-tuning step height | 5... 100 [\%] |
|  | YF1(1..6) 3) 4) | Proportional band 1 | 0,1 ... 999,9 [\%] |
|  | Trid(1..6) 4) | Integral action time | 0 . . 999999 [s] |
|  | Tu1(1..6) 4) | Derivative action time | 0 ... 999999 [s] |
|  | Titel | Title of controller page (only display) | 16 characters |
|  | Einh. ${ }^{\text {\% }}$ | Unit of the process value (only display) | 6 characters |
|  | Wint 1) | Internal after transmission of the engineering to KS 98-1 | -29999 ... 999999 |
|  | $\overline{\mathrm{H}} \cdot \mathrm{H}$ | Controller status after transmission of the engineering to KS 98-1 | 0 or 1 |

1) The values must be specified in the process value unit - e.g. $\left[{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}\right.$, bar, \%, etc.]
2) The rate of change must be specified in units/minute (e.g. $\left.{ }^{\circ} \mathrm{C} / \mathrm{min}\right)$.
$\rightarrow$ see gradient control page 261.

There is no relationship to values $\mathbf{W} \mathbf{0}$ and $1 \mathbf{1 0}$.
3) ( $\mathbf{1} \ldots \mathbf{6}$ ) refers to the six parameter sets of CONTR+ (e.g. Xp1, Xp2, Xp3...Xp6).

## Continuous controller / Split range

## Continuous controller

An analog value is provided as correcting variable by output Yot 1 , e.g. temperature control with electrical heating and thyristor power regulator.
A continuous controller in 'split-range' operation is comparable with a three-point controller. The neutral zone is also separately adjustable.


Within limits Xsh1 and Xsh2, the control deviation for calculation of the controller reaction is set to zero. A pure $P$ controller does not change the correcting variable within these limits. A PID controller has a dynamic behaviour which has not always decayed, also when reaching "control deviation $=0$ ". Both $D$ and I action can still have an effect accor ding to the characteristic determined by Tv due to a preceding disturbance or a setpoint step change. This effect can be strong enough to cause the control deviation to leave range $X$ sh1/Xsh2, i.e. the $P$ action is activated again for rea ching the neutral zone.

Fig.: 59
Operating principle of the proportional part of the continous controller


Selection from the following continuous controllers is possible:

1. CF Ernc: $=$ continuous $\rightarrow$ continuous controller
 The continuous output is split on outputs Yout1 and Yout2 .

The actually flowing positioning current can be displayed via input $Y p . Y p$ is not included in the control operation.

| Configuration | Effective controller parameters of a continuous controller |  |  |
| :---: | :---: | :---: | :---: |
| CFunc: $=$ <br> continuous <br> SplitRange | Fort. | Parameter set for self-tuning (only with C-OHTR+) | 1...6 |
|  | W61 1) | Lower limit for Weff | -29 999 ... 999999 |
|  | W166 1) | Upper limit for Weff | -29 999 ... 999999 |
|  | W2 1) | Additional | -29 999 ... 999999 |
|  | Grow+ 2) | gradient plus | off / 0,001 ... 999999 |
|  | Lrow- 2) | gradient minus | off / 0,001 ... 999999 |
|  | Groz 2) | gradient for W2 | off / 0,001 ... 999999 |
|  | $1+6$ | Zero offset (effective only with CType=ratio controller) | -29999 ... 999999 |
|  | $\square$ | Factor a (effective only with CType=3-element control) | -9,99 ... 99,99 |
|  | X心h1 3) | Neutral zone ( $\mathrm{X} w>0$ ) | 0,0 ... 1000 [\%] |
|  | $\mathrm{X} \leq 12 \mathrm{l}$ | Neutral zone ( X ¢ $<0$ ) | 0,0 ... 1000 [\%] |
|  | Y2 | Additional positioning value | $0 \ldots 100$ [\%] |
|  | Ymin | Min. output limiting | (-100) $0 \ldots 100$ [\%] |
|  | Yrime | Max. output limiting | (-100) $0 \ldots 100$ [\%] |
|  | Y6 | Correcting variable working point (start-up correcting variable) | -100... 100 [\%] |
|  | YOF-m | Positioning value during process at rest (not with PIDMA) | 0... 100 [\%] |
|  | GYort | Self-tuning step height | 5... 100 [\%] |
|  | XF1(1..6) 3) 4) | Proportional band 1 | 0,1 ... 999,9 [\%] |
|  | YFZ(1..6) 3) 4) | Proportional band 2 (only with continuous controller split range) | 0,1 ... 999,9 [\%] |
|  | Tri(1..6) 4) | Integral action time | 0 ... 999999 [s] |
|  | Tu1(1..6) 4) | Derivative action time | 0 ... $999999[s]$ |
|  | Titel | Title of controller page (only display) | 16 characters |
|  | Einh. $\%$ | Process value unit (only display) | 6 characters |
|  | Wint 1) | Internal after transmission of the engineering to KS 98-1 | -29999 ... 999999 |
|  | $\overline{\mathrm{H}} \cdot \mathrm{H}$ | Controller status after transmission of the engineering to KS 98-1 | 0 or 1 |

1) The values must be specified in the process value unit, e.g. [ ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$, bar, \%, etc.]
2) The rate of change must be specified in units/minute e.g. $\left.{ }^{\circ} \mathrm{C} / \mathrm{min}\right) . \rightarrow$ see gradient control page 261.
3) \% specifications are related to measuring range
4) ( $1 \ldots$... refers to the six parameter sets of CONTR+ (e.g. $\mathrm{Xp1} 1, \mathrm{Xp2} 2, \mathrm{Xp} 3 \ldots \mathrm{Kp} 6$ ).

## III-16.5 Optimizing the controller

## Process characteristics

Characteristics are determined automatically by the controller during self-tuning and converted into control parame ters. In exceptional cases, however, manual determination of these process characteristics may be necessary. For this, the response of process variable $x$ after a step change of correcting variable $y$ can be used (see Figure below).

Usually, it is not possible to plot the complete response curve ( 0 to $100 \%$ ), as the process must be kept within certain limits.

The maximum rate of increase $v_{\max }$ can be determined from the values $T_{g}$ and $x_{\text {max }}$ (complete step response) or $\Delta t$ and $\Delta x$ (partial step response).
$K=\frac{V \max }{X h} \cdot T u \cdot 100 \%$
$y=$ correcting variable
$Y_{h}=$ control range
Tu = delay time (s)
$\mathrm{Tg}=$ recovery time (s)
$V_{\text {max }}=\frac{X_{\text {max }}}{T g}=\frac{\Delta x}{\Delta \mathrm{t}} \hat{=}$ max. rate of increase of process value
$X_{\max }=$ maximum process value
$X_{h} \quad=\quad$ control range $\bumpeq \times 10 \mathbb{C D}$

Fig.: 60 step response


## Characteristic values of the controllers

Generally, quick line-out to the without oscillation is required.
Dependent of process, different control actions should be used.

- Processes with good controllability ( $K<10 \%$ ) can be controlled by means of PD controllers,
- Processes with medium controllability ( $K=10 \ldots 22 \%$ ) can be controlled with PID controllers and
- Processes with bad controllability ( $\mathrm{K}>22 \%$ ) can be controlled with PI controllers.

The control parameters can be determined from the calculated values of delay time $T_{u}$, max. rate of inrease $v_{\text {max }}$, control range $X_{h}$ and characteristic value $K$ according to the formulas. For more exact adjustment, see the hints given in the table of parameter adjustment effects. Increase Xp if line-out oscillates.

| Formulas |  |  |  |
| :---: | :---: | :---: | :---: |
| Action | Xp[\%] | Tv[s] | Tn[s] |
| (D)PID | 1,7 K | 2 Tu | 2 Tu |
| PD | 0,5 K | Tu | $\infty=0000$ |
| PI | 2,6 K | 0 | 6 Tu |
| P |  | 0 | $\infty=0000$ |
| 3-point stepping controller PID |  |  |  |
|  | 1,7K | Tu | 2 Tu |


| Parameter adjustment effects |  |  |  |
| :---: | :---: | :---: | :---: |
| Setting | Control | Line-out of disturbances | Start-up behaviour |
| $\begin{array}{ll} \text { Xp } \end{array} \begin{aligned} & \text { higher } \\ & \text { lower } \end{aligned}$ | Increased damping Reduced damping | Slower line-out Faster line-out | Slower reduction pf energy Faster reduction of energy |
| Tv higher | Reduced damping Increased damping | Faster response Slower response | Earlier reduction of energy Later reduction of energy |
| Tn higher | Increased damping Reduced damping | Slower line-out Faster line-out | Slower reduction of energy Faster reduction of energy |



## III-16.6 Empirical optimization

With missing distance data can empirically be optimized by means of the self-optimization or in manual attempts. With the attempts for empirical optimization the following is to be considered:

- It is to be guaranteed that correcting variable and controlled variable take never forbidden values!!!
- The conditions for the attempts should be always alike, in order to win comparable statements.
- The test sequence must be oriented at the goal of the optimization: Leadership- or interference behaviour.
- The operating point of the controller must be alike with the attempts.

The control parameters are to be set as follows with their first use:
Xp maximum: to the largest adjustable value,
Tv relatively large: time max., which the controlled system needs for distinct beginning of the reaction.
Tn large:time max., which the controlled system needs for the entire process.
The time requirement for an empirical optimization is large. In order to achieve an useful result in relatively short time , the following is recommended for appropriate procedure results:
(1) Adjust $T n=T v=0$ and $X p$ largest possible(p-controller). The $X p$ is reduced from attempt to attempt, as long as the control is sufficiently stable. If it becomes too unstable, then the Xp is to be increased and next step is (2).
(2) Measure lasting offset: If it is sufficiently small, then the optimization is successfully terminated (P). If it is too large, then the controlled system is better regulated with PD (adjust Tv relatively large and next step is (3) ).
(3) Reduce Xp from attempt to attempt, as long as the control is sufficiently stable. If it becomes too unstable, then the next step is (4).
(4) Tv is to be made smaller and determined whether the regulation can be sufficiently stabilized again. If, then it the next step is (3), if not, then Xp is to increase and the next step is (5).
(5) Determine whether with the procedures (3) and (4) the Xp was substantially made smaller. If, then the next step is (6), if not, then the controlled system better is pi-regulated (Tv set to 0 and the next step is (7)).
(6) Measure lasting offset. If it is sufficiently small, then the optimization is successfully terminated (PD). If it is too large, then the controlled system is better PID-regulated (no longer change Xp and Tv and the next step is (7)).
(7) Tn is adjusted largely and reduced from attempt to attempt, as long as the control is sufficiently stable. If it be comes too unstable, then the Xp is to be increased, and the optimization is successfully terminated (PID or pi).

For the controlled variable（process value $X$ ）the empirical optimization is substantially improved with a writer（or trend function of the engineering tool）in time requirement and quality，and evaluation of the test results is clearly simplified．

The procedure mentioned can only with restrictions be generalized and does not lead to a clear improvement of the behavior with all controlled systems．
（i）
Changes of the operating point（YO），the switching point distance（Xsh）and the lasting switching period（Tp1 and Tp2） lead to results，which can be better or worse．With 3 －Point－step controllers TM must be adjusted to the real running time of the conncted actuator．

## III－16．7 Self－tuning $\rightarrow$ controller adaptation to the process

For determination of optimal parameters a self－optimization can be accomplished．
This is applicable for controlled systems with reconciliation and none dominating dead time and K（4）30\％．After start by the operator the controller initiates an adaptation cycle in order to determine the line characteristic values Tu and Vmax．It calculates by it the control parameters for fast，overshoot－free correction to the（Xp1，Xp2，Tn，Tv，Tp1，Tp2， depending upon kind of controller）．

## Preparation

－Set the desired controller behaviour

| P－controller： |  | $T \mathrm{~V}=\underline{0}$ |
| :---: | :---: | :---: |
| PD－controller： | Tricer | $T \mathrm{~V}$＞ $\mathbf{0}$ ，区 |
| Pl－controller： |  | $T \mathrm{~V}=0.0$ |
| PID－controller： | Trı＞或 |  |

The parameters Tn and／or Tv can be switched off，by being adjusted to the value＝区，
Thus they do not participate in the self－optimization．
－With the automatic controller CONTR＋is to be selected，which parameter set is to be optimized（ $\mathrm{F} \mathbf{D}_{\mathrm{F}}^{\boldsymbol{\rightharpoonup}} \boldsymbol{\bullet}=1 \ldots$ ．．．6）．
－Configure conditions for process at rest（ロローローロ）
The condition designates，when＂Prozess at rest＂is to be recognized（ F IR＿H）：

－The correcting variable $\because \mathbf{V} \cdot \mathrm{m}$ is to be specified．This is，in automatic running，the correcting variable，which is output with the start of self－optimization in order to generate＂Prozess at rest＂．
 jumps，from the initial value $\mathrm{YO}_{\mathrm{F}} \mathrm{t} \mathbf{m}$ and／or in manual operation from the original correcting variable．
－Consider the reserve $(\rightarrow$ also see reserve，page 243）

## Process－at－rest＇monitoring（ F i $\mathbb{F}$ ）：

＇Process－at－rest＇monitoring is done at any time．The
Fig． 61 proces is at rest，when the process value is within a to－ lerance band of $\pm \Delta X=0.5 \%$ during more than 60 se－ conds．When the process value is out of this band，the monitoring timeout counter is reset to zero．With detec－ tion of PiR e．g．during control operation and output of a widely deviating stable correcting variable $\mathrm{YOF}_{\mathrm{F}}^{\mathrm{O}} \mathrm{m}$ at self－tuning start，waiting until the full PiR time has elapsed is required．
With extended monitoring，monitoring is for a constant－
 ly varying instead of a constant process variable！

Configuration word can be used to determine＇Process at rest＇detection．One of the following modes can be selected：

| $\operatorname{grad}(\mathrm{x})=0:$ | Process at rest is detected，when x is constant． |
| :---: | :--- |
| $\operatorname{grad}(\mathrm{x})<0 />0:$ | Process at rest is detected when x decreases constantly with a controller with inverse output action． <br> Process at rest is detected，when x increases constantly with a controller with direct output action． |
| $\operatorname{grad}(\mathrm{x})<>0:$ | Process at rest is detected with constantly changing x ．In this case，continuation of this constant change over <br> the duration of identification must be ensured． |

## reserve：

In order to make self－tuning possible，the separation between and process value before the output step change must be higher than $10 \%$ of W0．．．W100．The reserve is provided either automatically by reducing the correcting variable during the PiRphase，or by changing the or the process value manually（manual mode）．
With inverse controllers，the must exceed the process value by at least the reserve．
With direct controllers，the must be smaller than the process value by at least the reserve．
This is necessary，as the is a limit which should not be exceeded during self－tuning．

## Self－tuning start

Self－tuning can be started or stopped from automatic or from manual mode on the self－tuning page（ $\rightarrow$ see＂Start from automatic／manual mode＂page 243）．
Selec the self－tuning page by marking the two arrows $\rightarrow$ followed by configuration．Select function St．et．
OFF OK（inverse display）and confirm it by

Press key $⿴ 囗 ⿰ 丿 ㇄$

## Self－tuning cancelling

A self－tuning attempt can always be cancelled．Self－tuning can always be stopped by pressing automatic／manual key 웅 on the controller front panel，provided that key 园 was not disabled（1－signal on input orl low ）．
Moreover，cancellation is possible from the self－tuning page of the required controller．For this，press key $\Delta$ on the
 Stor blinks．Press $\square$ ，the self－tuning attempt was stopped and the controller continues operating in automatic mode．

## Start from automatic mode：


 sed with indirect controller，increased with direct controller）．
The self－tuning procedure is realized using the varying process value．

Fig．： 62 self－tuning $[\operatorname{grad}(x)=0]$


Fig．： 63 self－tuning［grad（ $x$ ）＜0］


After successful self-tuning, the controller goes to the automatic mode and controls the using the new parameters. Parameter (1ヶEE indicates the self-tuning result ( $\rightarrow$ see page 246) .

When finishing self-tuning with an error (Haje_Er-r$\left.{ }^{-}\right)$, the stable correcting variable is output, until self-tuning is finished by the operator via system menu, front-panel key $\frac{0}{\mathbb{O}}$, or via interface.

## Start from manual mode

To start self-tuning from manual mode, switch the controller to manual. During transition to manual mode, the correc ting variable output last is taken over as manual correcting variable. At self-tuning start, this correcting variable is ta ken over and output as temporary stable correcting variable. Like in automatic mode, the can be changed at any time.

With 'Process at rest' (PiR) detection and a sufficient reserve ( $\rightarrow$ see page 243 ), the correcting variable is changed by the correcting variable step - $\mathrm{Y}^{\mathrm{Y}} \mathrm{F} \cdot \mathrm{t}$. (increased with indirect controller, decreased with direct controller). `Process at Rest' $(\mathrm{PiR})$ can be reached at starting time, i.e. the normal 60 s waiting time can be avoided.
The self-tuning procedure is realized using the varying process value.
After successful self-tuning, the controller goes to the automatic mode and controls the using the new parameters.


Fig.: 64 Start by rising the setpoint


Fig.: 65 Start by lowering the setpoint


When finishing self-tuning with an error ( $\mathrm{H} \cdot \mathrm{j} \cdot \mathrm{E}$ Er $\mathrm{r}^{-}$), the stable correcting variable is output, until self-tuning is finished by the operator via system menu, front-panel key 윤, or via interface.

## Self-tuning procedure with heating:

(2-point, 3-point stepping, continuous controller)
After reaching 'Process in rest', the process is stimulated by means of an output step change and the process response is used to determine Tu1 and $V \operatorname{max1}$ at the step response reversal point, if possible.

## Self-tuning procedure with heating and cooling processes:

Fig.: 67 Principle of direct/invers switchover

(3-point / split-range controller)
Self-tuning starts as with a "heating" process. After self-tuning end, the controller settings based on the calculated parameters are made. This is followed by line-out at the pre-defined, until PiR is reached again. Subsequently, a step to cooling is made to determine the "cooling" parameters, in order to determine Tu2 and Vmax2 using the step response. Based on these characteristics, the controller settings for the cooling process are made.
When cancelling the cooling attempt, the parameters for "heating" are also taken over for cooling. No error message


Fig.: 66 Self-tuning with heating and cooling

 only then. This calibration procedure ( St.et. Abョl . ) is not shown in the figures.
(i) For maintaining a safe process condition, monitoring for an exceeded is done continuously.

During self-tuning, the control' function is switched off! l.e.: Ypid is within the limits of Ymin and Ymax.
4
With $\Delta / \lambda / 0$ ff controllers, self-tuning is using the function star, i.e. $Y 2=0$.

## Controlled adaptation

For defined applications, adaptation of the control parameter set to the current process condition is purposeful. For this, the Contr+ is provided with 6 control parameter sets, which can be selected via analog input Fiarrivo .

## Signification of self-tuning messages ORE $1 / \mathrm{RE}=2$

(i) Unless control is as required despite self-tuning, proceed additionally as described in section "Empirical self-tuning" ( $\rightarrow$ page , Hints for self-tuning, Hints for adjustment), and follow the hints given on further parameters.

## III-16.8 PIDMA (Control function with particular self-tuning behaviour (No. 93)

The controller block PIDMA is particularly suitable for difficult processes (with delay time, or of higher order). The difference between PIDMA and the CONTR block is only in the PID controller kernel (self-tuning and control algorithm). The additional functions ramp, switchover, override control, feed-forward control etc., which are described in the CONTR section, are not different.

(1) Page title (block name)
(2) source (Wint, Wext, W2)
(3) Physical unit
(4) Bargraph of correcting variable Y or XW or Xeff
(5) Entry into the optimization page
(6) Effective process value
(7) Internal setpoint
(8) Value of correcting variable Y or XW or Xeff
(9) Optimization/command entry status
(10) Optimization result heating
(11) PIDMA control parameters
(12) Test time/remaining time


The most important differences compared to controller functions CONTR and CONTR+ are:

- Integrated, front-panel operated optimization method like PMA tune

This function permits optimization also for difficult processes with $\mathrm{Tg} / \mathrm{Tu}<3$ without engineering tool and laptop, which was not possible with previous PMA (and competitor) controllers.

- Parallel controller structure unlike all other PMA controllers with "serial structure".
- Distinction of " behaviour" and "disturbance behaviour" by adjustable factors, which can be used for individual attenuation of P (proportional action) and D (differential action) control effect on changes.
- The adjustable derivative gain VD of the $D$ action, which is adjusted and matched to the process dynamics automatically by self-tuning. Purposeful values for VD are within $2 \ldots 10$, whereby all previous PMA controllers are fixed to $V D=4$ (empirical value for serial structure).

Using a PIDMA control block is purposeful where conventional PMA self-tuning methods are not satisfactory. PIDMA should not be used for processes where PMA self-tuning has always been and still is unrivalled:

- Processes with a ratio $\mathrm{Tg} / \mathrm{Tu}>10$
- (2nd order processes; with 2 [...3] energy storing elements!).

Roughly, these are applications in the plastics processing industry (extrusion, ...), where no improvements related to quick line-out without overshoot are possible (unless a "robust" controller design with stable results also with variable process dynamics and non-linearities is required)!

With classic thermal processes (ovens of all types, dryers, ...) air conditioning, level, flow, etc., however, a consider able number of difficult cases require the expenditure of many hours spent with hotline support or even at the site, in order to make a plant operate properly.

The various types of control behaviour are not explained in detail in this section, because there are no differences com pared to controller blocks CONTR and CONTR+ (see from page ).
Only the additional parameters explained at the beginning of chapter "PIDMA control characteristics" have to be des cribed.

The difference between split-range and 3-point behaviour is that PIDMA does not provide parameter distinction of hea ting and cooling.

PIDMA does not permit the adjustment of the signaller control behaviour.

## Inputs／outputs for PIDMA

| Digital inputs： |  |
| :---: | :---: |
| hide | Display suppression（with hiole＝ 1 the operating page is not displayed）． |
| lock | Adjustment locking（with lock $=1$ the values are not adjustable．Function keys $\boldsymbol{\Delta} \boldsymbol{\nabla}$ are not active）． |
| iruc | Increment for manual adjustment |
| dect | Decrement for manual adjustment |
| $\times{ }^{\circ}$ | Sensor error x1．．．x3 |
| ＇险 f | Sensor error Yp |
| B／ 1 | 0 ＝automatic 1 ＝manual |
| W／w2 | 0 ＝int．／ext． 1 ＝W2 |
| Wอ゙いi | 0 ＝external setpoint 1 ＝internal setpoint |
| treack | $0=$ tracking function off； $1=$ tracking function on $(\rightarrow$ page 273，262，263） |
| ＇19\％2 | 0 ＝output value Y 1 ＝output value Y 2 |
| －ff | 0 ＝controller switched on 1 ＝controller switched off |
| Erimim | 0 ＝soft manual 1 ＝hard manual |
| ostart． | 1 ＝self－tuning start $\rightarrow$ page |
| w stor | 1 ＝effective setpoint freeze |
| ヨr＊ | $1=$ setpoint gradient suppression |
| retarot | 1 ＝Start the setpoint ramp $\rightarrow$ the setpoint makes a step change towards the process value and goes to the adiusted process value according to GRW＋（GRW－）．The rising flank（ $0 \rightarrow 1$ ）is evaluated． |
| ロートide | 1 ＝self－tuning page display suppression |
| OFlouk | Blockage of key 윤（withorlocks＝1，switchover to manual by means of key 융 is not possible）． |


| Digital outputs： |  |
| :---: | :---: |
| －1 | Status of switching output Y1； $0=$ off $1=0$ n |
| －2 | Status of switching output Y2； $0=0$ off $1=$ on |
| Efail | 1 ＝controller in error handling |
| Off | 0 ＝controller switched off $1=$ controller switched on |
| 9／ M | 0 ＝automatic 1 ＝manual |
| －192 | 0 ＝output value Y 1 ＝output value Y 2 |
| w－${ }^{\text {wi }}$ | $0=$ external setpoint， 1 ＝internal setpoint |
| 0 「－ | Self－tuning running |
| 0 Er＊ | Error during self－tuning |
| XW St－LF | Alarm suppression with setpoint change |


| Analog inputs： |  |
| :---: | :---: |
| $\times 1$ | Main variable $\times 1$ |
| $\times 2$ | Auxiliary variable x2 e．g．for ratio control |
| $\times 3$ | Auxiliary variable x3 e．g．for 3－element control |
| Wext． | External |
| OUC．＋ | Override control $+\rightarrow$ page 269 |
| OWC－ | Override control－$\rightarrow$ page 269 |
| YF | Position feedback |
| YFM | Output with hard manual |
|  | Feed－forward control |
| C． $\mathrm{S}_{\text {cos }}$ | Cascade input for controller cascade |
| P＇ar＋＊o | Only with CONTR＋；required parameter set |


| Analog outputs： |  |
| :---: | :---: |
| Weff | Effective setpoint |
| X | Effective process value |
| Y | Effective output value |
| X X | Control deviation |
| W | Internal |
| Yout 1 | Output value yout1（heating） |
| Yout 2 | Correcting variable yout2（cooling；only with continuous controller with split－range behaviour $\rightarrow$ © F － splitRange） |
| Bl－ro | Own block number |
| Prar＊＊ | Only with CONTR＋；effective parameter set |

## III-16.9 Parameter and configuration for PIDMA

Parameters for PIDMA

| Parameter | Description | Range | Default | Unit |
| :---: | :---: | :---: | :---: | :---: |
| PTyp | Process type (with compensation or integral) | comp. | comp. | comp. |
|  |  | integral |  |  |
| Drift | Drift compensation | switched off | off | off |
|  |  | switched on |  |  |
| CSpeed | Control dynamics | slow | normal | normal |
|  |  | normal |  |  |
|  |  | fast |  |  |
| W0 | Min. setpoint limit (Weff) | -29999...999999 | 0 | 0 |
| W_Block | switchover disable function | Switchover via front-panel operation disabled | $\begin{aligned} & \hline \text { 0: block } \\ & \text { All } \\ & \hline \end{aligned}$ | t |
|  |  | Wext $\leftarrow \rightarrow$ Wint switchover is disabled | 1: block We |  |
|  |  | $\mathrm{W} \leftarrow \rightarrow$ W2 switchover is disabled | 2; block W2 |  |
|  |  | All switchover functions are enabled | 3: none |  |
| W160 | Max. setpoint limit (Weff) | -29999... 999999 | 100 | 1610 |
| W2 | Additional setpoint | -29999... 999999 | 100 | 106 |
| Gr-w+ ${ }^{2}$ | Setpoint gradient plus unit/min | 0,001...999999 | off |  |
| Gr ${ }^{(1) 2}$ | Setpoint gradient minus unit/min | 0,001...999999 | off | ---- |
| $\overline{\mathrm{Gr}} \mathrm{W}^{2}$ | Setpoint gradient for W2 unit/min | 0,001...999999 | off |  |
| +16 | Zero offset with ratio control | -29999... 999999 | 0 | $\underline{1}$ |
| $\exists$ | Factor a for 3-element control | -9,99...99,99 | 1 | 1 |
| Xsh1 ${ }^{19}$ | Trigger point separation (stepping controller) | 0,2...20,0\% | 0,2 | 0,2 |
| TF:키․ | Min. pause time (3-point stepping controller) | 0,1...999999[s] | 0,1 | 0,1 |
| TFuls | Min. positioning step time (3-point stepping controller) | 0,1..2,0[s] | 0,3 | 0,3 |
| Tm | Actuator response time (3-point stepping controller) | 5...999999 [s] | 30 | 30 |
| t.froor | Threshold for OPEN and CLOSE (stepping controller) currently not active | 0,2...100\% | 0,2 | 0,2 |
| throf f | Threshold for OPEN and CLOSE (stepping controller) currently not active | 0,2...100\% | 0,2 | 0,2 |
| Y2 | Additional correcting value (not with 3-point stepping controller) | -105,0...105,0[\%] | 0 | 0 |
| Ymin | Min. output limiting (not with 3-point stepping controller) | -105,0...105,0[\%] | 0 | 0 |
| Ymax | Max. output limiting (not with 3-point stepping controller) | -105,0...105,0[\%] | 100 | 100 |
| Y6 | Controller working point (not with 3-point stepping controller) | -105,0...105,0[\%] | 0 | 0 |
| - GOFt. 3 | Self-tuning step height | 5...100[\%] | 100 | 100 |
| $\begin{aligned} & \text { Xlimi } \\ & t \\ & \hline \end{aligned}$ | Switch-off point for correcting variable step (process value change) | 0,5...999999 | 1 | 1 |
| $\begin{aligned} & \text { Tolr if } \\ & t . \end{aligned}$ | Time window for drift determination (process value) | 0...999999 | 30 | 30 |
| Thois e | Time window for noise determination (process value) | 0... 999999 | 30 | 30 |
| KF | Control amplification | 0,1...999,9[\%] | 100 | 100 |
| Tri 1 | Integral time ( $\mathrm{Tn}=0 \rightarrow$ I action is not effective) | 0,0...999999[s] | 10 | 10 |
| TY 1 | Derivative time ( $\mathrm{Tv}=0 \rightarrow \mathrm{D}$ action is not effective) | 0,0...999999[s] | 10 | 10 |
| TF1 1 | Cycle time heating (3-point controller) | 0,4...999,9[s] | 5 | 5 |
| TF2 1 | Cycle time cooling (3-point controller) | 0,4...999,9[s] | 5 | 5 |
| UD | Derivative gain ( $\mathrm{Td} / \mathrm{T} 1$ ) | 1...999999 | 4 | 4 |
| blob- | Setpoint weighting factor proportional action | 0... 1 | 1 | 1 |
| CW_C | Setpoint weighting factor derivative action | $0 . . .1$ | 0 | 1 |
| Tegt. | Time constant for integral action in Y limiting (anti-reset wind-up) | 1...999999 | 50 | 50 |
| X Sh | Neutral zone for integral action | 1... 999999 | 0 | 0 |

1) Neutral zone $x_{s n}$ with 3-point stepping controllers is dependent on $T_{\text {puls' }} T_{m}$ and $x_{p 1}(\rightarrow V$. Hints for self-tuning).
2) for gradient control $\rightarrow$ page 261
3) for self-tuning $\rightarrow$ page 242 ff

Configuration data PIDMA

| Configuration | Description |  | Values | Default |
| :---: | :---: | :---: | :---: | :---: |
| C．Func | Control behaviour： | Signaller 1 output | Si mial |  |
|  |  | Sigigàlerer 2outputs | Sicus |  |
|  |  | 2－point controller | 2－bint |  |
|  |  | 「3－point controller（heationg／cooling switching） | S－Foint |  |
|  |  | 3－point controller（heat．continuous／cool．switching | Cont |  |
|  |  | I－point controller（heat．switching／cool．continuous） | Sul Cont |  |
|  |  | triangle－star－off（d／／－otf） | Ex－dop |  |
|  |  | 3－point stepping controiler | Sterfing |  |
|  |  | ＿－＿point－stepping controler with pos．feeddack Yo ＇Continuous controller | Corit | － |
|  |  | ＇Continuous controller with split－range obeeration | CFicteans |  |
|  |  | Coontinuous controller with position feedback $\bar{Y} \bar{p}$ | Cont YF |  |
| CTupe | Controller type | ＇Standard controller $\rightarrow$＿page | Standard | $\leftarrow$ |
|  |  | 「Ratiocontroller ${ }^{\text {a }}$－page | Retio |  |
|  |  | 3－element controiler $\rightarrow$ page 267 | ふ－ごご |  |
| WFunc | Setpoint function | setpointcontrol $\rightarrow$ p page | SetF |  |
|  |  | setpoint／cascade control $\rightarrow$ page | Sp／Csec |  |
| CMode | Output action | Inverse output action | Inverse |  |
|  |  | ＇Direct output action | ＇0irect |  |
| CFail | Behaviour with sensor error | Neutral | Neutral |  |
|  |  |  | Mrín |  |
|  |  |  | Mmax |  |
|  |  | Ypid Y Y̌2（noadjustment viva front panell） |  |  |
|  |  |  |  |  |
| cous | Output limiting | ＇No override control | 10ff |  |
|  |  | ＇Override control + | －00\％ |  |
|  |  | TOverride control | OUQ： |  |
|  |  | －Override control $+\overline{+}$ |  |  |
| WTras | Int．tracking | No tracking of Wint | Off |  |
|  |  | －setpoint tracking | SF－track |  |
|  |  | Process value tracking | ＇FU－t．reck |  |
| Ratio | Ratio controller function： | ＇（x1 + N0 $) / \times 2 \rightarrow$ page 2667 | Telat 1 | $\leftarrow$ |
|  |  | （ $\times 1 \times+N 0) /(x 1+\times 2) \rightarrow$ page $26 \overline{6}$ | TeFe |  |
|  |  | $\Gamma\left(\times 22^{-x 1}+\bar{N} \overline{0}\right) / \times 2{ }^{2} \rightarrow$ page $2 \overline{6} \overline{6}$ | TMFe |  |
| 8DF | Digits behind the deci | cimal point（process value） | $0 . .3$ | 0 |
| DisF | Contents of bargraph line： | Output variable |  |  |
|  |  | Controldeviation |  |  |
|  |  | ＇Xeff | 鸟乐f |  |
| Xre | Span start |  | －29999 ．．． 999999 |  |
| Xn10］ | Span end |  | －29999．．．． 999999 | 100 |
| SFac | Factor stoichiom．rati |  | 0，01 ．．．99，99 | 1，00 |

## III－16．10 Controller characteristics and self－tuning with PIDMA

As opposed to CONTR and CONTR＋，the PIDMA includes a modified parallel controller structure，which is taken into account in the following additional parameters．

Additional parameters for PIDMA

| Parameter | Description | Values |
| :---: | :---: | :---: |
| F＇Terpe | Process type（a－priori information） | 1：with compensation 2：without A．（integral） |
| Drift | Drift compensation des Istwertes zu Beginn der Selbstoptimierung | $\begin{aligned} & \text { 0: off } \\ & \text { 1: on } \end{aligned}$ |
| C＇SFe日d | Required control loop dynamics | 1：slow <br> 2：normal <br> 3：fast |
|  | Minimum positioning step time（stepping controller） | 0，1．．．999999［s］ |
| throriol | Switch－on threshold for OPEN and CLOSE（stepping controller） | 0，2．．．100\％ |
| throff | Switch－off threshold for OPEN and CLOSE（stepping controller） | 0，2．．．100\％ |
| Klimit | Switch－off point for output step change（process value change） | 0，5．．．999999 |
| Turift | Time window for process value drift determination | 0．．．999999 |
| Thoise | Time window for process value noise determination | 0．．． 999999 |
| KF | Control gain（replaces Xp1；／Xp2 of CONTR） | 0，001．．．999，9［\％］ |
| UD | Derivative gain（Td／T1） | 1．．．999999 |
| bu＿F | Setpoint weighting factor of proportional action | $0 . . .1$ |
| CW＿或 | Setpoint weighting factor of D action | $0 . . .1$ |
| Te日t． | Time constant for I action in Y limiting（anti－reset wind－up） | 1．．． 999999 |
| x S － | Neutrale Zone，in dem der I－Teilfestgehalten wird | $0 \ldots 999999$ |

## Three－point stepping（ $\mathbf{Y p}$ ）：

Tpause，thron and throff complete the effective parameters for stepping motor control．Tpause permits adjustment of the minimum pause in addition to limiting of the minimum pulse via Tpuls．

## thronoff：

The initially provided parameters for motor stepping controller structure in PIDMA are ineffective in the present reali－ zation．Only parameter xsh can be used for stabilizing the positioning activities．

## Xsh

Xsh can be used to influence the motor actuator switching frequency and fine setting．Xsh determines the dead band of the control deviation in the main controller．The controller I action is stopped within this zone．

## Integrated position controller

With 3－point stepping controller with position feedback（step＋Yp），the PIDMA function block comprises two control－ lers：the main controller controls the process value and provides a required actuator position to an integrated position controller．By means of position feedback，this position controller ensures that the actuator position is as required．

## Self－tuning：

PType，Drift，Cspeed，Xlimit，Tdrift and Tnoise complete parameter dYopt which is also effective with CONTR．These parameters define the conditions during self－tuning．

Ptype determines，if the process is without compensation（the new process value after a correcting variable pulse is higher，e．g．level of a container without outlet or well－insulated furnace）．An even decrease or increase of the process
value before self-tuning can be detected by means of drift monitoring and taken into account when self-tuning is done for the next time.

CSpeed can be used to determine if, during subsequent operation, the controller should reach the setpoint quickly, with a slight overshoot, or slowly with gentle approach to the setpoint. Using CSpeed, the parameter can be switched over also after self-tuning, provided that the controller parameters were not changed manually.

After self-tuning start, timer Tdrift for process value drift detection and timer Tnoise for noise detection (variations independent of the correcting variable) are started. Dependent on process, the timers should be long enough to permit detection of an interference-independent drift and multiple "ups" and "downs" of interference effects.

After elapse of these timers, the actual correcting variable is increased by dYopt . When the process value has increased by more than Xlimit under consideration of drift and noise, the correcting variable is reset to the initial value. Ho wever, self-tuning is completed only, when the process value has decreased to nearly half of the initial value after exceeding the maximum. During decrease after the correcting variable pulse, the estimated remaining time until self-tuning end is displayed continuously. After completion of self-tuning, the determined parameters K , Ti and Td are displayed on the self-tuning page, taken over into the function block together with parameters VD, BW_p and CW_d and activated for the running process.

## Control parameters of PIDMA:

Unlike CONTR, PIDMA does not have separate parameters for heating and cooling. Parameter $\mathbf{K}$ which is valid for both ranges determines the control gain of a parallel controller structure.
Further parameters permit independent weighting of individual controller components:
VD: In addition to the control gain, the derivative gain (Td/T1) permits an increase or reduction of the derivative action.
BW_p: Setpoint weighting factor of proportional action
CW_d: Setpoint weighting factor of derivative action.

Fig. 68


Parameters BW_p and CW_d can reduce the effect of a setpoint change on the controller reaction. I.e. different con troller behaviour after setpoint changes (control behaviour) or process value changes (disturbance behaviour) can be selected. A factor within 0 and 1 can be applied to the setpoint effect.

In the course of dynamic process control，the control algorithm can temporarily determine values below 0 or above 100 for the correcting variable．If necessary，however，these values can be reset to the limits by means of accelerated inte－ gral behaviour（Tsat）．
Tsat time constant for integral action in $Y$ limiting（anti－reset wind－up）．

## Self－tuning $\rightarrow$ controller adaptation to the process（PIDMA）

Self－tuning can be started to determine the optimum parameters for a process．The function is applicable for the follo－ wing processes．

## Preparation

－Adjusting the required control behaviour．

| P－controller： | Trion． $0^{10}$ | $\mathrm{T} u=0.0$ |
| :---: | :---: | :---: |
| PD－controller： | Trion． $0^{1}$ | Tu＞0．0 |
| PI－controller： | Tri＞0．0］ | $T \mathrm{~V}=0 . \mathrm{D}$ |
| PID－controller： | Tri＞6． $0_{1}$ | T $u>0.0$ |

Parameters Trior or $\mathbf{V}$ can be switched off by setting $=\mathbf{1}$ ．I．e．these parameters do not participate in self－tuning．
－Correcting variable step change drot．must be determined．This is the value by which the correcting variable changes from the actual value．The step change can be positive or negative．
－Xlimit must be determined．It should be set to roughly half of the expected process value change．

## ＇Process at rest＇monitoring：

The PIDMA does not provide monitoring for the rest condition．The commissioning engineer is responsible for selection of a suitable start time．Optimum results are only achieved，if the process is lined out，i．e．all dynamic actions have de－ cayed．Only in few cases in which parameter determination is imposssible due to decaying dynamics the algorithm pro－ vides a＂restart＂error message．

## Self－tuning start

Self－tuning can be started and stopped from automatic or manual operation on the self－tuning page．
Select the self－tuning page by marking and confirming the two arrows．Select function St．もt：ロFFバロ《（inverse display）and confirm it with $\square$ ．

Pressing key starts the self－tuning attempt．The setpoint can be changed at any time．However，this is not necessa－ ry as opposed to CONTR．A change after starting from automatic mode would even cause faulty process evaluation．

## Self－tuning cancelation

Self－tuning can be stopped at any time by pressing key manual／automatic 운 on the controller front，provided that key


Fig． 69 Self－tuning page


Moreover，cancelation is possible on the self－tuning page of the required controller．For this purpose，select the Stat： line（inverse display）on the self－tuning page，press $\square$ ，Stat：line blinks．Press $\Delta$ until St．et：Stor blinks．Press Q，the self－tuning attempt is stopped and the controller continues operating in automatic mode．

## Start in manual mode or in automatic mode :

Basically, the PIDMA self-tuning algorithm does not distinguish between these two start conditions. In both cases, the operator must ensure that the process conditions are stable. In automatic mode, however, the PIDMA works with the non-optimized parameters until start of the correcting variable pulse. This means that, in the majority of cases, better stability of process conditions, i.e. better self-tuning results, are possible in manual mode. When changing to manual mode, the correcting variable output last is taken over as manual correcting variable and used during estimation.

After self-tuning start, the estimation timer for drift detection and noise detection is started at first. In the second pha se, the correcting variable is changed by correcting variable step change $-\mathrm{H}_{\mathrm{F}} \mathrm{t}$. When the process value has changed by more than Xlimit, the correcting variable is reset to the original value. In the third phase, the PIDMA waits for the maximum value of the increasing process value. Subsequently, it monitors the decaying process value in the fourth phase. During this time, an estimation of the remaining time until completion of the self-tuning attempt is output.

After a successful self-tuning attempt, the controller goes to the automatic mode and controls the setpoint using the


Fig. 70 PIDMA-optimization progress


When self-tuning is finished with an error ( $\mathrm{A} \cdot \boldsymbol{\mathrm { j }}$. $\mathrm{Er}^{-} \mathrm{r}^{-}$), the stable correcting variable is output, until self-tuning is finished by the operator via the system menu, front panel key $\mathrm{O}_{\mathrm{N}}$, or via the interface.

## Self-tuning procedure with heating and cooling processes:

(3-point / split-range controller and mixed controllers)
With F I D'the different control gains for heating and cooling cannot be specified. For this reason, the 2-step self-tuning attempt is omitted.

## Signification of self-tuning messages DRe:

After successful self-tuning, parameter CFE®d can be used to increase or reduce the attenuation, when self-tuning was done with the setting for C'SFEed = "normal" . Moreover, only an increase or reduction of KF should be considered. After manual change of the controller parameters, the Cspeed switch-over stops being effective.

## III-16.11 Controller applications:

The following chapter describes the common characteristics of controller block connection, which are independent of the CONTR and PIDMA controller kernel, such as and correcting variable switchover and limitingas well as process value pre-processing.

## Controller front-panel operation

## Controls on the controller page

Multilingual operation is not provided for the controller operating pages. Texts such as title and unit should be langua -ge-independent, if necessary.
(1) Page title (block name)
(2) source (Wint, Wext, W2)
(3) Physical unit
(4) Bargraph of correcting variable Y or XW or Xeff
(5) Entry into the self-tuning page
(6) Effective process value

Fig. 71
(7) Controller setpoint

(8) Value of correcting variable Y or XW or Xeff
(9) Self-tuning/command entry status
(10) Self-tuning result heating
(11) Process characteristics heating
(12) Self-tuning result cooling
(13) Process characteristics cooling

Chapter "Operation" on page
Chapter "Operating pages" on page
Chapter "Controller" on page


## Switchover disabling

In many applications, switchover via the front panel should be not possible.
Unwanted, accidental process interventions should be prevented by all means. For these cases, switching over via front panel operation may be disabled.
This is done by parameter W Block, which is intended for blocking individual or all switchover operations purposefully.
In default setting, all switchover operations are blocked and the switchover field for front-panel operation cannot be selected.


Switchover to Wext is blocked by configuration Wfunc $=$.
Whan W < > W2 switchover is blocked and Wext < > Wint switchover is not possible ( control), the field is skipped when selecting.

## Further status displays on the operating page

During optimization or with cascade control, further display elements may appear on the operating page.

## Statuses during optimization

The optimization statuses are displayed with priority in the display field for manual operation.

Optimization running: $\quad$| display: |
| :--- |
| display: | Oerr

Faulty optimization:

When the optimization is finished with an error, the unit waits for acknowledgement by the operator.
By pressing key 圆 twice or by input of the stop command on the optimization page, the controller returns to the initial status.

## Cascade control operation

The cascade is one of most frequent controller structures with coupled control loops.

Fig.: 72 Reglerseite bei gestarteter Optimierung.

| Temperstur | 1* |
| :---: | :---: |
|  | 4 |
| bor | $36$ |
| Y: | [1. ${ }^{\text {a }}$ |

To facilitate construction and handling of these cascades, measures for connection and operation were taken at and in the controller blocks.

- A cascade consists of min. two controllers: a master controller the process value of which provides the main correcting variable and a slave controller on the process value of which the main variable is dependent.
- For building a cascade, the correcting variable output ('Yout. 1) of the master may be wired to the input ( (Wlext.) of the slave controller via a scaling function (SCAL).
- The slave controller is informed on the cascade by connecting the master block number output to the slave cas cade input.

The special operating functions of a controller cascade for master and slave are grouped on the common operating page of the slave controller.
(1) Title of the operating page
(2) Parameter set selection, if available
(3) Cascade mode toggle field (open/close)
(4) Master source $\left(W_{\text {int }}, W_{\text {ext }}, W_{2}\right)$
(5) Display field for manual mode (otherwise empty)
(6) Physical unit (master or slave)
(7) Entry into self-tuning
(8) Master
(9) Slave process value
(10) from master during automatic mode, from slave with open cascade)
(11) Bargraph and display (Y from slave or X/XW from master)
(12) Display of slave selection with open cascade (otherwise empty)

Fig. 73 Operating page of a cascade controller in automatic mode


## Cascade operation is possible in the following operating statuses

## (see also section operating pages on page 36 ):

- During automatic mode, the master variables ( and process value) are the relevant variables in the process. The master controller is directly adjustable. The process value of the slave controller is only displayed. "Cascade" is displayed.
- Like every slave controller, the slave can be switched over to its internalsetpoint or to W2 via control inputs. In this case, display is "Casc-open" as when opening via the operating field. Now the slave controller becomes the pro-cess-relevant variable and can be adjusted via the field (display "Slave" left in front of the setpoint). The master circuit process value is provided by the slave circuit rather than being controlled. Switching over between master or slave setpoint operation is possible at any time.
- During manual mode, the process is influenced directly by the slave controller correcting variable. The slave correcting variable is adjustable during manual mode. "Man" is displayed.
During manual mode, or when the slave works with the internal setpoint or W2, the cascade is opened. The slave does not react on the master correcting variable any more. Suitable measures for master correcting variable tracking by the slave process value should be provided in the engineering, in order to ensure bumpless switchover to automatic mode (see example Fig. 74 )

Fig. 74 Engineering view of a cascade structure


## Cascade optimization

switchover disabling on the slave by means of parameter W Block prevents cascade opening via front panel operati on! This parameter can be used to influence the W/We/W2 selection via the front panel.
Closing of the cascade will cause automatic slave switchover to the external
For identification of the data source, text " $\mathbf{C l} \mathbf{l}$ リヒ" is displayed right beside the unit field when the cascade is open. A longer unit text can be overwritten partly.

Now only the first 4 characters of the unit are visible.
During cascade operation, the master information is displayed in the fields for, source, physical unit and X/XW bar graph. With open cascade (display "Slave"), the slave information is displayed instead.

## Optimizing the cascade

In a cascade, the slave controller and, subsequently, the master controller must be optimized. Self-tuning entry on the cascade operating page always refers to the slave!
For master optimization, the master must be selected purposefully via the operating menu!

## Manual operation

Changing between automatic and manual mode is by pressing key 윤. The manual mode influences only the slave controller. The master is concerned only indirectly.
The bargraph display switches over to slave variable Y. Adjustment of the correcting variable is via the value beside the bargraph.
The setpoint switchover and adjustment operations influence the master controller !

## The following rules apply to the bargraph display :

- When X or XW display is selected for the master bargraph display, the display value from the master controller is taken over.
- If $Y$ display is selected, the slave bargraph value is used.


## Faulty wiring of a controller cascade

If an invalid cascade circuit was built up in the engineering, e.g. with the cascade input not connected to output BI-no of a master controller, the control function is not operable.

Error signalling is in the display field for the cascade: Display: E: Er-r

Fig.: 75 Faulty cascade wiring


## Multiple cascade

A cascade control loop can be built up from a master controller with one or several slave controllers (see Fig. 76 : Level control example with three subordinated flow controllers). Cascade operation is from the slave controller page. Display of the master operating page should be suppressed (hide=1).

Fig. 76 : Example of a flow-control


Operator interface activation for cascade control is automatic for controllers the Casc input of which is connected with the BI-no output of another controller.
In the above example, 3 flow controllers operate as slave controllers for level control. All three slave controllers offer the operator interface for level control with a separate operating page. Master tracking during manual mode of the slave as specified for simple cascade control in the example cannot be used without detailed considerations, because

1. two further cascade branches are still intact, when one controller is in manual mode
2. it is not clear, which process value should be used for tracking, when all controllers are in manual mode

## III－16．12 Setpoint functions

## Terminology

w internal setpoint
we external setpoint
w2 second（internal）setpoint
Weff effective setpoint
xw control deviation（ $x-w \rightarrow$ process value－）

## General

Several possible setpoints are available．For the priorities，see the drawing shown opposite．＂Safety setpoint＂w2 is given priority over the other setpoints．Switchover between setpoints is possible via interface or via the digital inputs of the conroller block．

If gradient control was activated，a change will be made effective continuously instead of being made effective by a step $\rightarrow$ gra－ dient control page 261.

By activating digital input $\mathbf{w} \quad \mathbf{s} \mathbf{t} \mathbf{o r}$ ，the instantaneously effec－ tive setpoint is maintained．In this case，neither a setpoint change

Fig． 77
 nor switchover to another setpoint becomes effective．

## Setpoint／setpoint／cascade

Configuration word WFFerne can be used to select，if switch－over to the external setpoint（setpoint／cascade）is also possible in addition to the internal setpoint．

## Setpoint



## Setpoint／cascade



Unless this input is connected，or if a 0 signal is applied，the external setpoint is used as effective setpoint．Unless di－ gital input w・ブ・ハi as well as analog input wext．are connected，the controller invariably uses the internal setpoint．

## W2－safety setpoint

The second setpoint W2 can be activated at any time and has highest priority．The change－over between internal set－ point and W2 can be triggered via interface or the digital control input w $\mathbf{w} \mathbf{2}$ ．In order to make the $\mathbf{W} 2$ effective，on $\mathbf{w} / \mathbf{2}$ is a logic 1 to be attached．If the internal setpoint is to be active，a logic 0 must be given on weノ心i
In the past $\mathbf{W} \boldsymbol{Z}$ was designated as＂safety setpoint＂．Whether $\mathbf{W} \boldsymbol{W}$ takes over safety functions or only a pre－defined starting position in certain process conditions，becomes determined only by the kind of the use and integration into an automation concept．

## External setpoint WEXt.

Switching between the internal setpoint ( $\mathbf{w i} \mathbf{i}$ ) and the external setpoint ( $\mathbf{w} \mathbf{E}$ ) is possible only if the parameter WF
The change-over can be triggered via interface or the digital control input wer ini
In order to make the internal setpoint effective, on wishi must be attached a logic 1 . If the external setpoint is to be active, a logic 0 must be given on wermi .
If the digital control input werli is not wired, the external setpoint is effective.
The internal setpoint $\mathbf{W}$ is evaluated with priority. If in a place (interface or the digital control input wermi) is switched to internal setpoint it is not possible to switch over to the external setpoint liext. from another source.

## Gradient control - setpoint changes with gradients

Normally, setpoint changes occur stepwisely. Unless this behaviour is required, a gradient can be set-up using parame -

 tive setpoint $\mathbf{W}$ にҒf runs linearly towards the changed setpoint (target value), whereby the slope is determined by gradients $\overline{\mathbf{I r}}$ - $\mathbf{w}+$ and $\mathbf{I} \mathbf{-} \mathbf{w}$ - adjustable at parameter setting level ( $\rightarrow$ see Fig.: 78). For the second W2, an independent gradient $\overline{\mathbf{G}}-\mathbf{\omega} \mathbf{2}$ was introduced, which is valid for both change directions and for $\mathrm{w} \rightarrow \mathrm{W} 2$ switchover.



Fig.78:


## Switch-over with gradients (W $\rightarrow \mathbf{W} 2, \mathbf{W} \rightarrow \mathbf{W e x t , ~ c o n t r o l l e r " o n " ) ~}$

The new setpoint is linear started outgoing from the momentary process-value. The slope of the ramp is determined re -


This principle applies, even if the process-value is outside the adjustable range W0/W100 at switch-over time (e.g. when starting).

Fig.79:


## Controlling the setpoint

The digital inputret.art. reacts to a positive signal slope and sets the effective setpoint to the process value. The new goal is started on the basis of the controlled variable xeff. Such a ramp can only be started with activated gra-

 if the effective setpoint straight approaches a new goal or a new goal is selected.

Fig. 81:


## Setpoint-Tracking

During the change-over of $\mathbf{W} \mathbf{N} \mathbf{*} \mathbf{t} \rightarrow \mathbf{W}$ it can come to unwanted jumps. To aviod these jumps setpoint-tracking can be

 Gr- $\mathbf{W + ノ ー}$. With the configurationword is determined if the controller shall follow process value or setpoint-tracking Wtrac. Tracking can be activated via interface or by operating the switchover Wext $\rightarrow$ W . Tracking is evaluated with priority.
If a source (interface or digital input) is activating setpoint-tracking, switching by operation switching $\mathrm{W}_{\text {ext }} \rightarrow \mathrm{W}$ from another source is not possible!

Fig. 80:


## Process-value tracking

It can occur that the is far distant from the momentary process-value (e.g. when starting a plant).
In order to prevent the jump developing here, the function process-value tracking can be used.


If the controller shall follow process value or setpoint-tracking is determined with the configurationword lirs. The digital input "track" enables Tracking. Tracking can be activated via interface or by operating the switchover Wext $\rightarrow$ W. Tracking is evaluated with priority.

## If a signal source switches to tracking, switching from another source is not possible!

Fig. 82:


## Setpoint and correcting variable behaviour after setpoint switch-over

After setpoint and correcting variable switch-over, control behaviour or start-up behaviour has priority. The PID charac teristic must be partly suppressed. The previous history which is important for the integral action and especially for the derivative action is largely insignificant with setpoint change due to the new target setpoint.

## Switch-over operations which might affect the control behaviour are:

| 1 | Manual $->$ automatic | Switch-over from manual to automatic mode |
| :--- | :--- | :--- |
| 2 | Off $->$ start-up | Start-up after off-line (power failurel/configuring) |
| 3 | Wold $^{->}$W new | Setpoint change |
| 4 | W $\rightarrow$ W2 | Switch-over to 2nd setpoint |
| 5 | W2 $->$ W | Switch-over from 2nd setpoint to normal setpoint |
| 6 | We $->$ Wi, without tracking | Switch-over from external to internal setpoint without tracking |
| 7 | Wi $->$ We | Switch-over from internal to external setpoint |
| 8 | We $->$ Wi with tracking | Switch-over from external to internal setpoint with tracking |

The approach to a new setpoint may be affected by further parameters. Parameters Grw+ (positive setpoint gradient), Grw- (negative setpoint gradient) and Grw2 (setpoint gradient during the approach to W2) can be used for gradual ap proach to a new target setpoint via a ramp function.
Unless a gradient is defined (Grw = off), approach to the new setpoint starts with a step change at the previous set point or at the actual process value.
To influence the correcting variable when switching over, any after-effect of the derivative action is eliminated inter nally or the integral action is adapted to avoid correcting variable bumps.
The following table gives a survey of the controller switch-over behaviour implemented from operating version 8 .

## Controller-internal operations during switch-over with CONTR, CONTR+ and PIDMA

$\left.\begin{array}{|c|l|l|}\hline \text { Switch-over } & \begin{array}{l}\text { Without gradient function }\end{array} & \begin{array}{l}\text { After correcting variable adaptation with de- } \\ \text { letion of a still effective derivative action, the } \\ \text { approach to the setpoint is bumpless }\end{array}\end{array} \begin{array}{l}\text { With gradient function } \\ \hline \mathbf{1} \\ \text { ning in the background during manual } \\ \text { mode. After switching over to automatic, } \\ \text { the correcting variableis adapted and the } \\ \text { derivative action is deleted and the setpoint } \\ \text { is set to the actually reached ramp setpoint } \\ \text { (bumpless). }\end{array}\right\}$

## Gentle line-out to the target setpoint with ramps

When using a setpoint ramp, a process value overshoot at the ramp end may occur. Due to the difference between setpoint and process value in the course of the ramp, an integral action is built up and must be removed after the end of the ramp. The longer the ramp, the higher the integral action. And the more exact the process value follows the set point, the higher the probability that any integral action will cause an overshoot.

The target line-out function is used to adapt the integral action to the actual PD action at an adjustable distance before reaching the ramp end value, the D-dynamics is initialized and the setpoint is set to the ramp end value. Now the controller dynamics re-starts bumplessly related to the new setpoint.

Controller parameter "a" can be used to define at which distance to the final setpoint the target orientation should be switched over to the final setpoint. The target line-out function is activated under the following conditions :

1. W < Wend
2. $\quad W>$ Wend-2a
3. $X>$ Wend-a

Fig. 84


## Marginal conditions / restrictions:

With internal setpoint ramps, the controller knows the future target setpoint. When using external setpoints with ramp function (programmer), the ramp end value must be bound to input X3 of the controller block. When the internal ramp is active, line-out to the target setpoint is always related to the internal ramp end value, and the value at X 3 is ineffec tive.
Target line-out is activated only, if the external ramp setpoint changes continuously. The function can be used both with differentiation of control deviation (XW) and differentiation of process value (X). With 3-element control, target line-out is omitted. The signification of parameter "a" is different and connection of an external end setpoint is not possible. With ratio control, target line-out is only restricted with fixed distance (1 in units of the physical quantity). The signification of parameter $a$ is different.

## III-16.13 Process value calculation

## Standard controller

The process variable measured via analog input X 1 is
used as process value by the controller.
Fig. 83


## Ratio controller

Process control frequently requires various components to be mixed into a product. These components must be mixed according to a given ratio.
The main component is measured and used as reference for the other components. With increasing flow of the main component, the flow of the other components will increase accordingly. This means that process value x used by the controller is determined by the ratio of two input variables rather than being measured as one process variable.

For optimum combustion，the fuel－air ratio must be controlled．With stoichiometric combustion，the ratio is selected so that there are no inflammable residues in the waste gas．In this case，the relative rather than the physical ratio is dis－ played as process value and adjusted as setpoint．

If the transmitters used by the controller are designed with a stoichiometric ratio，$\lambda=1$ is met exactly with restless combustion．

With a process value display of 1,05 ，the instantaneous air excess is clearly $5 \%$ ．The amount of air required for atomi－
 Moreover，configuration word＇R．Et．ig＇must be taken into account．

## With ratio controller， note that parameters Kr and Krin 10 must be set to the input range of connector X 1 ．

## Example of standard ratio control：

Standard ratio control at the example of stoichio－ metric combustion．Analog input INP1 is configured to $4 \ldots 20 \mathrm{~mA}$ with physical unit $\mathrm{m}^{3} / \mathrm{h}$（air）．Values 0 and 100 are allocated to input variables $4 \mathrm{~mA}(\times \mathbf{x})$ and 20 mA （ $\times 1 \mathbf{1 6}$ ）．
Atomizing air NO is added to this input．
E．g．INP5 is selected as second ratio input．This in－ put is also configured for $4 \ldots 20 \mathrm{~mA}$ and $\mathrm{m}^{3} / \mathrm{h}$ （gas）．$x 0$ and $x 100$ values 0 and 100 are allocated to the input variables．

Weff effective as relative ratio is multiplied by stoichiometric factor SF：ac．（e．g．SFac＝10），i．e．a „stoichiometric＂flow ratio can be used for calcula－

Fig． 85
 tion of the control deviation．The instantaneous （controlled）process value is calculated from the physical ratio，multiplied by $1 / \mathrm{SFac}$ and displayed as relative value．

## Material batching and mixing

The following examples are intended to show that various control possibilities can be used．This is necessary，since the materials to be mixed（e．g．paste）are not always directly measurable due to their consistency．Other cases may re－ quire a component to be controlled in relation to a total rather than to another component．

Rもtio＝TヨFに $1 \quad W=\frac{X 1+N 0}{X 2 \cdot \text { SFact }}$

The first case is obvious．Almost everybody knows what hap－ pens during brewing．
Yeast（ x 1 ）must be batched in relation to the original wort（x2）．The is adjusted in＇\％yeast＇，e．g．$W=3 \%$ ．The ratio inputs are scaled in equal units．The control deviation is multiplied by＇ $\mathbf{S F E C}=0,01$＇and calculated according to equation $\mathrm{xw}=(\mathrm{x} 1+\mathrm{N} 0)-0,03 \mathrm{w} \times 2$ ，so that exact－ ly $3 \%$ of yeast are batched with $\mathrm{xw}=0$ ．Process value display is also in \％．Constant $\mathbf{N} \mathbb{E}$ is without importance $(\mathbb{N} \underline{x}=0)$

Fig． 86


$$
\text { Ration=TyFe } 2 \quad W=\frac{X 1+N 0}{(X 1+X 2) \cdot \text { SFact }}
$$

In this example, water ( x 1 ) must be batched as a percentage of the total (paste; $x 1+x 2$ ). As the paste quantity is not available directly as a measurement signal, the total is calculated internally from x 1 and $\times 2$. N0 $=0$ must also be adjusted in this case.

Retion TuFe $\Xi \quad W=\frac{X 2-X 1+N 0}{X 2 \cdot \text { SFact }}$

Unlike the previous examples, yoghurt (x2) and the final product $(\mathrm{x} 1)$ are measured in this case.

## Three-element control

With three-element control, process value calculation is according to equation $x_{\text {eff }}=\times 1+a \cdot(\times 2 \backslash \times 3)$ whereby term ( $\times 2 \backslash \times 3$ ) is the difference between the steam and water flow rates. Factor b for flow range matching used so far is omitted, because the mA signals are converted directly into physical units during input value conditioning ( $x 0, x 100$ ). The calculated process value is displayed on the process value display.



Fig. 87


Fig. 88


Fig. 89


## Correcting variable processing

The following considerations related to correcting variable processing are applicable to continuous controllers, two-point, three-point and three-point stepping controllers with position feedback. The diagram opposite shows the functions and interactions of correcting variable processing.

Fig.: 90 Steps of the output signal processing


## Second correcting value

Similar to processing, switch-over to a second preset correcting value $\sqrt{2}$ is possible. Switching over is done via digital input $\unlhd \mathcal{y} y \mathbf{Z}$. Whether Y 2 has safety functions, or whether it is only a pre-defined start position in defined process conditions is determined only by the use and integration into an automation concept.

Second correcting value $Y 2$ is evaluated with priority. When switching over to 42 is done at one point (interface or digital control input ' $3 / 42$ '), switching over at the other point is not possible.

## Correcting variable limits

Parameters $\mathrm{Y}_{\mathrm{m}} \mathrm{in}$ and $\mathrm{M} \cdot \mathrm{X}$ determine the limits of the correcting variable range within $0 . . .100 \%$. With three-point and continuous controller „split range", the correcting variable limits are within -100 $\ldots+100 \%$. Parameters $\mathrm{Y}^{\mathrm{m}} \mathrm{i}$ in and $\mathrm{Y}_{\mathrm{m}} \mathrm{EX}$ are used to specify fixed correcting variable limits.

## External correcting variable limiting (override control)

Dependent of 'COUO:' setting, the lowest (DUC:-), the highest (IUC+) or lowest and highest correcting value (0UC+TOC-) can be limited by analog input signals.
Override control is used where bumpless switch-over to another controller when reaching defined process conditions and mainly according to other criteria is required. The basic principle is that two controllers act on the same motor actuator.

Fig. 91 Fixed correcting variable limits


Fig. 92 Maximum value limiting


Fig. 93 Minimum value limiting


Fig.: 94 Mini- and Maximum value limiting


## Limiting control

Limiting with continuous output. Limiting control with three-point stepping output can be realized by using a continu ous controller with the OVC function. A position controller (three-point stepping) provides override control.

Fig.: 96 Limit control with continuous controller


## Override (limiting) control using a three-point stepping output

Override control is also possible by means of a classical three-point stepping controller. The positioning signals of the limiting controller must be connected as shown in the example Fig.: 95.
Fig..95 Limit control with motor stepping controller


Which one of the two controllers influences the process is decided in the slave controller logic. The first "close" pulse coming from the limiting controller switches over to override control. The limited controller automatically retrieves the positioning authority, when it first tries to close the actuator further.

## Bumpless auto/manual switch-over

Sudden process interventions by control mode switch-over are usually not desired. Excepted is purposeful switch-over $y \rightarrow Y 2$.
$A \rightarrow M$ switch-over is always bumpless; the last correcting value is frozen and can be changed manually. $M \rightarrow A$ switch-over is different. Correcting value differences are compensated as follows: when switching over, the controller integral action is set to correcting value $Y_{M}$ output last plus correcting variable portions of the controller $P$ and $D$ action running in the background $\left(Y_{I}=Y_{M}+Y_{P D}\right)$.

Fig.: 97


Now, only the integrator, which adapts the correcting variable slowly to the stationary value according to the actual control deviation, is active.

## III－16．14 Small controller ABC

Some operating principles，which are realized in the controller（ $\boldsymbol{\nu}$ ）or which are possible by means of an additional en－ gineering are explained in the following section（Cross references are shown in italics．

## $\sqrt{ }$ Anti－reset－wind－up

Measure which prevents the controller integrator from saturation．

## $\checkmark$ Working point（ $\mathbf{V} \mathbf{( 1 )}$

The working point of a P or a PD controller indicates the value output to the process with process value $=$ ．Although this value is only important for P and PD controller，it can also be of interest for controllers with integrator（automatic working point）．

## $\checkmark$ Automatic operation

Normal controller operation．The controller controls the process by means of the adjusted control parameters．Automa－ tic operation is effective with $\overline{\mathrm{B}} \cdot \mathrm{Mi}$（di7）set to 0 （automatic）AND automatic selected via front－panel key 圈 AND EmFini（di16）set to 0 （soft manual）．Contrary：manual operation．
$\checkmark$ Cutback
Reset of the integral action shortly before reaching the end setpoint with setpoint ramps．
$\checkmark$ Cycle time
The duration of a switching cycle（pulse and pause）at $50 \%$ power control of a 2－point controller．

## $\sqrt{ }$ Line－out to the target

By early setpoint switch－over to the ramp end setpoint，the controller is given a new target orientation for smooth line－out to the target．
$\sqrt{\checkmark}$ Bandwidth control
With program control or gradient control，there may be a considerable control deviation if the process is slow．This can be prevented by monitoring the control deviation for an adjusted tolerance band by means of additional function


## 」 Three－element control

Particularly suitable for processes in which load changes would be detected too late（e．g．level control for steam boi－ lers）．In this case，a disturbance variable is used at which the mass balance（steam removal，feed water）is evaluated， subtracted and added to the control variable（after differentiation，if necessary）．

## $\checkmark$ Feed－forward control

Especially suitable for processes with long delay time，e．g．pH－control．A disturbance variable is used，at which the
 avoiding the controller time behaviour．

## $\checkmark$ Gradient control

Particularly suitable for processes in which energy shocks or quick setpoint changes must be avoided．setpoint chan－ ges are bumpless in both directions，since the effective setpoint always runs towards the changed（destination）by means of gradients Grw＋or Grw－．For the second w2，gradient Grw2 acts in both directions，also with $w \rightarrow$ w2 switch－over．

## $\checkmark$ Manual operation

When switching over to manual operation，the automatic sequence in the control loop is interrupted．Modes soft ma－ nual and hard manual are available．Switch－over automatic $\rightarrow$ manual and vice versa are bumpless．Manual operation is effective with $\Xi \times \mathrm{m}$（di7）set to 1 （manual）OR manual selected via front－panel key 园 OR （hard manual）．Contrary：automatic．

If automatic remains selected via key 융，the controller changes to automatic after omission of the di7 signal．With manual selected additionally via key $\square_{0}$ ，the controller remains in manual mode after omission of the di7 signal．

## 

Safety output value Yim. The controller output goes to the preset value immediately, when hard manual is active (the controller is switched to manual mode directly). Keys $\boldsymbol{\Delta} / \boldsymbol{\nabla}$ are without effect. Switch-over to automatic mode is bumpless.

## 」 Cascade control

Particularly suitable for temperature control in e.g. steam boilers. A continuous master controller (load controller) provi des its output signal as an external to a slave controller, which varies the output value.
$\checkmark$ Override control (OVC) $\rightarrow$ page 269
Limiting of the min. (OVC-) or max. (OVC+) output value to the value of an analog input. Limitation by override control can be used e.g. with control continued by a different controller dependent of different conditions when reaching defi ned process statuses. The transitions from unlimited $\rightarrow$ limited output value and vice versa are bumpless.
$\checkmark$ Program control
The effective setpoint follows the profile of a programmer (APROG with APROGD) connected to input Wext; the controller must be set to we (di9=0).

## $\checkmark$ Process at rest

For a clear optimization attempt during self-tuning, the control variable must be in a stable position. Various rest conditions can be selected:

| Process behaviour with constant output <br> value | Recommended <br> setting |  |
| :--- | :---: | :--- | Stability FIR_H is reached, if

## $\checkmark$ Ramp function

changes in ramps rather than in steps. See gradient control.
$\checkmark$ Control parameters
For controller optimization, the controller must be matched to the process characteristics
$(\rightarrow 5$ Optimizing help, $\rightarrow 6$ Self-tuning). The effective parameters are Xp1, Tn, Tv and Yo.
Dependent of controller operating principle, the following additional parameters are possible:
Tp1 (with 2-point/3-point controllers), Xp2 and Tp2 (with 3-point controllers),
Xsh and Tpuls and Tm (with 3 -point stepping controllers).

## $\checkmark$ Control behaviour

Generally, fast line-out to the without overshoot is required. Dependent of process, various control behaviours are de sirable for this process:

- easily controllable processes (k < $10 \%$ ) can be controlled with PD controllers,
- processes with medium controllability (k 10...22\%) using PID controllers and
- badly controllable processes ( $\mathrm{k}>22 \%$ ) with PI controllers.


## $\checkmark$ Controller OFF ( $\mathrm{\square} \mathrm{f} \mathbf{\dagger}$ )

With input off $f=1$, there are no pulses at the switching output and the continuous outputs are $0 \%$.

## $\checkmark$ Self-tuning

For optimum process control, the controller must be matched to the process requirements. The time required for this purpose can be reduced considerably by self-tuning ( $\rightarrow 6$ Self-tuning). During self-tuning, the controller makes one adaptation attempt during which the control parameters are determined automatically from the process characteristics for fast line-out to the without overshoot.
$\checkmark$ Soft-Manual
Usual manual operation: with automatic $\rightarrow$ manual change-over, the last output value remains active and can be adjusted via keys $\triangle / \nabla$. Transitions automatic $\rightarrow$ manual and vice versa are bumpless.

## $\checkmark$ switch-over

In principle, the following s are possible: internal wi second internal w2 and external we. With program control, external we must be selected. The analog comes from APROG and is applied to input Wext.

」 y feedback control
Particularly suitable for processes in which load changes lead to process value drops. A load-dependent change to (preferable) or process value is made. The evaluated and filtered output value is added to the in a separate function block. Use the Wext. input and set the controller to we.

## $\checkmark$ PI/P switch-over

When optimizing slow processes, e.g. big furnaces, the controller I action can cause problems: if starting up was opti mized, line-out can be slow; with optimization of the disturbance behaviour, there may be an important overshoot. This effect is prevented by switching off the I action during start-up or with high control deviations (e.g. by applying a limit contact to the control deviation) and switching it on again only when the process value approaches the. To prevent permanent control deviations, the limit contact must be further away from the than the permanent control deviations.

## $\checkmark$ Tracking

During switch-over from external or program setpoint to internal setpoint, setpoint or output value step changes may occur. By means of the tracking function, the transition is bumpless. Process value tracking: During switch-over, the effective process value is used as internal setpoint. Setpoint-tracking: During switch-over, the external or program setpoint used so far is taken over as internal setpoint.
$\checkmark$ Behaviour with fail (configuration of the controller behaviour with sensor failure, $\times \mathbf{f}^{\mathbf{+}}$ )

| Selected behaviour | Effect with 3-point stepping |
| :--- | :--- | :--- |
| controllers |  |$\quad$ Effect with other controllers

$\checkmark$ Ratio control
Particularly suitable for controlling mixtures, e.g. fuel-air mixture for ideal or stoichiometric combustion. For taking e.g. the atomizer air into account, zero offset $\mathbf{N} \mathbb{\boxed { l }}$ can be added.

## •x/xw differentiation

Dynamic changes of process value or setpoint affect control differently. $x$-differentiation: Process value changes (dis turbances) are used dynamically to permit better control results. xw-differentiation: Changes of process value (disturbances) and setpoint are used dynamically to permit a better control result. In this case, the improvement is dependent of both disturbance and control behaviour.

## $\checkmark$ Controller operating principle

The static operating principles for controllers with P or PD behaviour with adjustable working point YO are shown. On controllers with I action, the working point is shifted automatically. The outputs ( $\rightarrow$ ) are described with $\mathbf{h}$ (,heating"), $\mathbf{c}$ (,,cooling"), („open") and (,"close").

## III－17 Inputs

## III－17．1 AINP1（ analog input 1 （No．08））



For direct connection of temperature sensors，for potentiometric transducers and standard signals

## General

Function＇AINP1＇is used for configuration and parameter setting of analog input INP1．It is firmly allocated to block number 61 and is calculated firmly in each time slot．The function provides a corrected measurement value and a mea－ surement value status signal at its outputs．

## Inputs／outputs

| Digital inputs： |  |
| :---: | :---: |
| 100k | Calibration locked（with lock＝ 1 calibration is locked） |
| Fide | Display suppression（with hide＝ 1 the calibration page is not displayed） |
| Digital outputs： |  |
| feil | Signals an input error（short－circuit，polarity error，．．） |
| 9 m | Manual signal |
| iヶじ | Increment signal |
| － | Decrement signal |
| Analog inputs： |  |
| Y | Output variable |
| Analog outputs： |  |
| InF＇1 | Signal input |

Parameter and configuration data

| Parameter | Description | Values | Default |
| :---: | :---: | :---: | :---: |
| ＜1ir | Measured value correction P1，input | －29999 ．．． 999999 | 0 |
| x10ut． | Measured value correction P1，output | －29999 ．．． 999999 | 0 |
| x2iヶ | Measured value correction P2，input | －29999 ．．． 999999 | 100 |
| x20ut． | Measured value correction P2，output | －29999 ．．． 200000 | 100 |


| Configuration | Description |  | Values | Default |
| :---: | :---: | :---: | :---: | :---: |
| TソFE | Type L－200．．．900 ${ }^{\circ} \mathrm{C}$ |  | TYF＇EL | $\leftarrow$ |
|  | Type J－200．．． $900{ }^{\circ} \mathrm{C}$ |  | T－BFE J |  |
|  | Type K－200．．． $1350^{\circ} \mathrm{C}$ |  | TソFE K |  |
|  | Type N－200．．． $1300^{\circ} \mathrm{C}$ |  | T－yFe N |  |
|  | Type S－50．．． $1760{ }^{\circ} \mathrm{C}$ |  | TソF゙高 |  |
|  | Type R－50．．． $1760{ }^{\circ} \mathrm{C}$ |  | T－yFe P |  |
|  | Type T－200．．． $400^{\circ} \mathrm{C}$ |  | T＇ヨFE T |  |
|  | Type W 0．．． $2300^{\circ} \mathrm{C}$ |  | T＇ヨFE ${ }_{\text {U }}$ |  |
|  | Type E－200．．． $900{ }^{\circ} \mathrm{C}$ |  | T＇ヨFE E |  |
|  | Type B $0 . . .1820{ }^{\circ} \mathrm{C}$ |  | T＇Pre ${ }^{\text {E }}$ |  |
|  | Pt $100-99,9 . . .850,0^{\circ} \mathrm{C}$ |  | Fticle 85 |  |
|  | Pt $100-99,9 . . .250,0^{\circ} \mathrm{C}$ |  | Ft 10 0 250 |  |
|  | 2x Pt $100-99,9 . .850^{\circ} \mathrm{C}$ |  | 2Ft100 85 |  |
|  | $2 \times \mathrm{Pt} 100-99,9 . .250,0^{\circ} \mathrm{C}$ |  | 2 Ft 106 25 |  |
|  | $0 . . .20 \mathrm{~mA}$ |  | Q－－－20円 |  |
|  | 4．．． 20 mA |  | 4．－－20ヶH |  |
|  | $0 . .10 \mathrm{~V}$ |  | Q．．－100 |  |
|  | $2 \ldots 10 \mathrm{~V}$ |  | $2-1010$ |  |
|  | Transducer 0．．．500 ${ }^{\text {a }}$ |  | Fot－trars －50001 |  |
|  | Resistance $0 . .250 \Omega$ linear |  | 0．25 |  |
| Fail | Fail function off |  | di | $\leftarrow$ |
|  | Digital output $\mathrm{f} \cdot \exists \mathrm{il}=1, \quad=1=$ |  | UF：EC日l |  |
|  | Digital output $\mathrm{f} \cdot \mathrm{E}$ il $1=1, \cdots 1=$ |  | Downccale |  |
|  | Digital output $f$＇ヨil $=1, \underline{\prime} 1=$ |  | Subst－val． |  |
| Kkorr | Measured value correction off | only effective with thermocouple and Pt100 setting | －ff | $\leftarrow$ |
| 人korr | Measured value correction adjus |  | －rion |  |
| Urıit | Unit $={ }^{\circ} \mathrm{C}$ |  | ${ }^{\circ} \mathrm{C}$ | $\leftarrow$ |
|  | $\text { Unit }={ }^{\circ} \mathrm{F}$ |  | ${ }^{\circ} \mathrm{F}$ |  |
| STK | Internal temperature compens． | only effective with | int. ETE | $\leftarrow$ |
|  | External temperature compens． | thermocouple | $\text { ext. } \mathrm{CTO}$ |  |
| $\times 6$ | Physical value at 0\％ | only effective with standard | －29999 ．．． 999999 | 0 |
| $\times 100$ | Physical value at 100\％ | signals（0／4．．20mA or 0／2．．10V） | －29999 ．．． 999999 | 100 |
| XFヨil | Substitute value with sensor error |  | －29999 ．．． 999999 | 0 |
| Tf「m | Filtertime constant［s］ |  | 0 ．．． 999999 | 0，5 |
| Tkr゙ef | Reference temperature at $\Xi$ TK | ．TK | $0 . . .140$ | 0 |

## Measured value conditioning

Before the pre－filtered（time constant ．．．；limiting frequency ．．．）analog input signals are available as digitized measurement values with physical quantiy，they are subjected to extensive measured value conditioning．


## Input circuit monitor

## $\square$ Thermocouples

The input circuit monitor monitors the thermocouple for break and polarity error. An error is deter mined if the measured thermovoltage signals a value which is by more than 30 K below the span start.
$\square$ Pt100 measurements and transducers are monitored for break and short-circuit.

## $\square$ Current and voltage signals

With current ( $0 / 4 \ldots 20 \mathrm{~mA}$ ) and voltage signals $(0 / 2 \ldots 10 \mathrm{~V})$, monitoring for out-of-range $(\mathrm{I}>21,5 \mathrm{~mA}$ or $\mathrm{U}>$ $10,75 \mathrm{~V}$ ) and for short circuit ( $1<2 \mathrm{~mA}$ or $\mathrm{U}<1 \mathrm{~V}$ ) with "life zero" signals is provided.
 "Gubst. val a ' defined in the configuration can be preset for the input circuit.

## Linearization

Thermocouples and Pt100 are always measured over the overall physical measuring range according to data sheet and linearized according to the allocation table. Linearization is realized with up to 28 segment points by error curve ap proximation.

## Scaling

mA and V standard signals are always scaled according to the physical measuring range of the transmitter ( $\mathrm{x} \mathbf{0}$, $\times 16$ (10)
With transducer measurements, "calibration" is according to the proven method. Bring the transducer to start and then to end position and "calibrate" it to $0 \%$ or $100 \%$ by key pressure. In principle, calibration corresponds to a scaling, whereby gradient and zero offset are calculateed automatically by the firmware.

## Additional measurements

Dependent of configured sensor type, additional and corrective measurements are required.
The amplifier zero is checked with all measurement types and included into the measurement value. The lead resistances with Pt100 and transducer, and the cold-junction reference temperature (internal TC) are measured addi tionally.

## Filter

A 1st order filter is adjustable in addition to the analog part filtering of each input signal.

## Sampling intervals

The sampling interval for the INP1 is 200 ms .

## Linearization error

Thermocouples and Pt100 are linearized over the overall physical measuring range. Linearization is with up to 28 segments, which are placed optimally on the error curve by a computer program and thus compensate the linearity errors. As error curve approximation is provided only by segments (polygons) rather than by an nth order polynomial, there are points on the characteristic in which the residual error is zero. Between these "zero points", however, the residual er ror has very small, but measurable values. For the reproducibility, however, this error is irrelevant, because it would re peat itself in exactly the same point and amount, if the measurement would be repeated under identical conditions.

## Temperature compensation

Measurement of the cold-junction reference temperature is using a PTC resistor. The temperature error thus deter mined is converted into mV of the relevant thermocouple type, linearized and added to the measured value as correc tive value with correct polarity. The remaining error with varying cold-junction reference temperature is approx. $0,5 \mathrm{~K} / 10 \mathrm{~K}$, i.e. about one tenth of the error which would occur without compensation. Better results are possible
with controlled external TC, which is adjustable within $0 \ldots+140^{\circ} \mathrm{C}$ at the cold junction reference dependent of controlled temperature. With cold-junction reference measurements for "reproducibility" assessment, however, utmost care must be taken that constant environmental conditions are not exceeded when working with internal TC. An air draft at the PTC resistor of the cold junction reference can be sufficient to falsify the measurement result.

## Measured value correction

The measurement can be corrected in various ways using the measured value correction.
 absolute one are of interest, e.g.:
-the compensation of measurement errors in one working point ( control)
-minimization of linearity errors in a limited operating range (variable )
-correspondence with other measuring facilities (recorders, indicators, PLCs, ...)
-compensation of sample differences of sensors, transmitters, etc.
Measured value correction is designed for zero offset, gain matching and for both. It corresponds to scaling mx+b, with the difference that the KS 98-1 firmware calculates gain $m$ and zero offset $b$ from the value pairs for process value ( $<1$ irn;


## Example 1:

Zero offset

$$
\begin{array}{ll}
\times 1 \text { ir }=100^{\circ} \mathrm{C} & \text { x10ut }=100^{\circ} \mathrm{C}+1,5^{\circ} \mathrm{C} \\
\times 2 \mathrm{ir}=300^{\circ} \mathrm{C} & \times 2 \mathrm{O} \text { at }=300^{\circ} \mathrm{C}+1,5^{\circ} \mathrm{C}
\end{array}
$$

The corrected values are shifted evenly with reference to the input values over the complete range.

## Example 2:

Gain change (rotation around the coordinate origin)

$$
\begin{array}{ll}
x 1 \mathrm{irf}_{=}=0^{\circ} \mathrm{C} & x 10 \mathrm{t} .=0^{\circ} \mathrm{C} \\
\times 2 \mathrm{irn}=300^{\circ} \mathrm{C} & \times 2 \mathrm{out}=300^{\circ} \mathrm{C}+1,5^{\circ} \mathrm{C}
\end{array}
$$

The corrected values diverge despite equality with the input values at $\times 1 \mathrm{in}$ and $\times 1$ out.

Fig. 98


## Example 3:

zero and gain matching
x1in $=100^{\circ} \mathrm{C} \quad$ x10.t. $=100^{\circ} \mathrm{C}-2,0^{\circ} \mathrm{C}$
$x 2 \mathrm{in}=300^{\circ} \mathrm{C} \quad x 2$ Out $=300^{\circ} \mathrm{C}+1,5^{\circ} \mathrm{C}$
The corrected values are shifted already at values $x 1$ in and $\times 1$ out. and diverge additionally.

Fig. 100


## Sensor types

The input sensor type can be determined as thermocouple, resistance thermometer, potentiometric transducer or as standard signal (current and voltage). The physical quantity is freely selectable.

## Input thermocouple

The following thermocouple types are configurable as standard:
Type L, J, K, N, S, R, T, W, E and B according to IEC584.
The signal behaviour can be affected by the configuration of the following points. Distinction between internal and external temperature compensation $(\rightarrow \mathbf{S}$ TK) is made.

- Internal compensation:
the compensating lead must be taken up to the multi-function unit connecting terminals. No lead resistance ad justment is required.
- External temperature compensation:

A separate cold-junction reference with a fixed reference temperature must be used (between 0 and $140^{\circ} \mathrm{C}$ configurable) ( $\rightarrow$ Tkref). The compensating lead must be taken only up to the cold-junction reference, the cable between reference and multi-function unit terminals can be of copper. No lead resistance adjustment is necessary.

- The action of the built-in TC break protection can be configured for L-AFEle ( << process value) or

- For measured value processing, a filter time constant with a numeric value between 0,0 and 200000 is adjustable ( $\rightarrow \mathrm{T} \mathbf{~} \mathbf{m}$ ).



## Resistance thermometer input

Resistance thermometer, temperature difference
With a resistance thermometer, the signal behaviour with sensor break can be determined
$(\rightarrow \mathrm{F} \exists \mathrm{il})$. No temperature compensation is required and is therefore switched off. With temperature difference measurement, calibration by means of short circuit is required. If lead resistance adjustment is necessary, it can be realized by means of a $10 \Omega$ calibrating resistor (order no. 9404209 10101). Dependent of signal source type, the unit is configured for one of the following inputs:

- resistance thermometer Pt 100 with linearization
- temperature difference with $2 \times \mathrm{Pt} 100$ and linearization
- linear potentiometric transducer

For measured value processing, a filter time constant with a numeric value within 0 and 999999 can be adjusted $(\rightarrow$


## Resistance thermometer Pt 100

The two ranges $-200,0 \ldots+250,0^{\circ} \mathrm{C}$ and $-200,0 \ldots+850,0^{\circ} \mathrm{C}$ are configurable ( $\rightarrow$ t' $\mathrm{\prime}$ Fに) .
Connection in two or three-wire circuit is possible. Copper lead must be used for measurement. The input circuit monitoring responds at $-130^{\circ} \mathrm{C}$ (sensor or lead break). The action is configurable for:

Dounsc.ele(>> process value)
Gutstitute val

Resistance thermometer in 2-wire connection:
For lead resistance adjustment, disconnect the input leads from the multi-function unit terminals and short circuit them in the connecting head of the resistance thermometer. Measure the lead resistance by means of a resistance bridge and change lead adjusting resistor (Ra) so that its value is equal.

Resistance thermometer in 3-wire connection:
The resistance of each input lead must not exceed $30 \Omega$. No lead resistance adjustment is necessary, provided that the resistances of the input leads $R_{L}$ are equal. If necessary, they must be equalized by means of a calibrating resistor.

Temperature difference $2 \times \mathrm{Pt} 100$


For lead resistance adjustment, the two thermocouples must be short-circuited in the connecting head.
See also Page 35.
With blinking Set. Diff, wait until the input has settled
(minimum 6 s ). Press $\square \rightarrow$ Cal done is displayed $\rightarrow$ Lead resistance adjustment is finished. Remove the two short-circuits.

## Potentiometric transducer

Overall resistance $\leq 500 \Omega$ incl. 2•RL.
Calibration or scaling is with the sensor connected.

Before calibration, the mains frequency required for operation must be adjusted.


Calibration is as follows.
Calibration is as described in section 10.4. The user-specific calibration values are stored in configurations $\mathrm{X} 0, \mathrm{X} 100$.

## X0, X100 application principle

Configurations $\mathrm{X0}, \mathrm{X} 100$ are used in different ways dependent on the input type:

- Current input: $\mathrm{X0}, \mathrm{X} 100$ are scaling values of the signal source (e.g. temp. transmitter): $0 \mathrm{~mA}=\mathrm{X0}, 20 \mathrm{~mA}=\mathrm{X100}$.
- Potentiometric transducer input: $\mathrm{X} 0, \mathrm{X} 100$ are the user-specific calibration values. Within range $\mathrm{X} 0, \mathrm{X} 100$, display of $0 . . .100 \%$ input signal is required.
- Temperature difference input: $\mathrm{X0}, \mathrm{X} 100$ contain the lead resistance values after calibration by the user: X 0 is the lead resistance of connected sensor 1. X100 is the lead resistance of connected sensor 2.

X 0 and X 100 are parameters of function block AINP1, i.e. part of the engineering.
This means that the user calibration remains unchanged after replacing the unit, if it was reloaded into the engineering after calibration.
$\%$ Wert $=\frac{X-A I O L}{A I 1-A I O L}$

## Standard 0/4... 20 mA current input

The input resistance is $50 \Omega$
During configuration, distinction of $0 \ldots 20 \mathrm{~mA}$ and $4 \ldots 20 \mathrm{~mA}$ is made. For $4 \ldots 20 \mathrm{~mA}$ standard signal, the signal behaviour with sensor break can be determined ( $\mathrm{F} \exists \mathrm{i} \mathrm{l}$ ). Additionally, physical input signal scaling using a defined value of K E and $\mathbf{K 1 0}$ is possible. For measured value processing, a filter time constant with a numeric value between 0,0 and 200000 can be adjusted $(\rightarrow \mathbf{T} \mathbf{~ f r i})$

## 0/2... 10 V voltage signal input

The input resistance is $\geq 100 \mathrm{k} \Omega$
During configuration, distinction of $0 \ldots 10 \mathrm{~V}$ and $2 \ldots 10 \mathrm{~V}$ is made. For $2 \ldots 10 \mathrm{~V}$ standard signal, the signal behaviour with sensor break can be determined ( $\mathrm{F} \boldsymbol{\mathrm { Gi }} \mathrm{l}$ ). Additionally, physical input signal scaling with a defined value of $\mathrm{X} \mathbf{0}$ and $\mathrm{K10} \mathrm{E}$ is possible. For measured value processsing, a filter time constant with a numeric value within 0,0 and 200000 can be adjusted ( $\rightarrow$ Tf「m)

## III-17.2 AINP3..AINP5 ( analog inputs 3... (No. 112...114) )

For standard signal connection


## General

Functions 'AINP3...AINP5' are used for configuration and parameter setting of analog inputs INP3...INP5. They are firmly allocated to block number $63 . . .65$ and are calculated in each time slot. The functions provide corrected measure ment values and measurement value statuses at their outputs.
For the general functions (scaling, error control, filter...) see AINP1 $\rightarrow$ Page 275
Inputs / outputs

| Digital outputs: |  |
| :--- | :--- |
| †'sil | Signals an input error (short-circuit, wrong polarity, ..) |
| Analog outputs: |  |
| InF:1 | Signal input |

## Parameter and configuration data

| Parameter | Description | Values | Default |
| :---: | :---: | :---: | :---: |
| X1in | Measured value correction P1, input | -29999 ... 999999 | - |
| $\times 1$ out. | Measured value correction P1, output | -29999 ... 999999 | 0 |
| $\times 2 \mathrm{ran}$ | Measured value correction P2, input | -29999 ... 999999 | 100 |
| x2out. | Measured value correction P2, output | -29999 ... 999999 | 100 |
| Configuration | Description | Values | Default |
| T'IFPe | $\begin{array}{\|l\|} \hline 0 \ldots . .20 \mathrm{~mA} \\ 4 \ldots . .20 \mathrm{~mA} \\ 0 \ldots . .10 \mathrm{~V} \\ 2 \ldots . .10 \mathrm{~V} \\ \hline \end{array}$ | $\begin{array}{\|l} \hline 0 \ldots .20 \mathrm{~mA} \\ 4 \ldots .20 \mathrm{~mA} \\ 0 . .10 \mathrm{~V} \\ 2 . .10 \mathrm{~V} \\ \hline \end{array}$ | $\leftarrow$ |
| Fail | Fail function off <br> Digital output $\mathbf{f}$ : $\mathrm{i} 1=1, \because 1=\times 1 \mathrm{Cl}$ <br> Digital output $f: \exists i l=1, \exists 1=x \mathbf{0}$ <br>  | disabled Upscale Downscale Subst.val. | $\leftarrow$ |
| XkOrror | Measured value correction off Measured value correction adjustable | off | $\leftarrow$ |
| $\begin{aligned} & \times 60 \\ & \times 1000 \end{aligned}$ | Physical value at $0 \%$ effective only with standard signals <br> Physical value at $100 \%$ $(0 / 4.20 \mathrm{~mA}$ or $0 / 2 . .10 \mathrm{~V})$ | $\begin{array}{\|l\|} \hline-29999 \\ -29999 \\ \hline \end{array} . . .999999999 .$ | $\begin{gathered} 0 \\ 100 \\ \hline \end{gathered}$ |
| Tf\% | Filter time constant [s] | $0 . . .999999$ | 0,5 |

## III-17.3 AINP6 ( analog input 6 (No. 115))

For direct connection of potentiometric transducer and standard signal


## General

Function 'AINPG' is used for configuration and parameter setting of analog input INP6. It is firmly allocated to block number 66 and is calculated in each time slot. The function provides a corrected measurement value and a measured value status signal at its outputs.

## Inputs / outputs

| Digital inputs: |  |
| :---: | :---: |
| lock | Calibration disabled (with lock = 1 calibration is disabled) |
| hide | Display suppression (with hide = 1 the calibration page is disabled) |
| Digital outputs: |  |
| fail | Signals an input error (short circuit, wrong polarity, ..) |
| B/m | Manual signal |
| inc | Increment signal |
| dec | Decrement signal |


| Analog inputs: | Output variable |
| :--- | :--- |


| Analog outputs: | Signal input |
| :--- | :--- |
| InF:1 |  |

## Parameter and configuration data

| Parameter | Description | Values | Default |
| :--- | :--- | :--- | :--- |
| $\times 1$ irt | Measured value correction P1, input | $-29999 \ldots 999999$ | 0 |
| $\times 1$ out. | Measured value correction P1, output | $-29999 \ldots 999999$ | 0 |
| $\times 2$ in | Measured value correction P2, input | $-29999 \ldots 999999$ | 100 |
| $\times 2$ out. | Measured value correction P2, output | $-29999 \ldots 999999$ | 100 |


| Configuration | Description | Values | Default |
| :---: | :---: | :---: | :---: |
| T'IFe | $0 . .20 \mathrm{~mA}$ <br> 4... 20 mA <br> Transducer $0 . . .1000 \Omega$ | 0. . . 26mi <br> 4. . 20 mF <br> Pot. tr:ans. | $\leftarrow$ |
| Fail | Fail function off <br> Digital output $\mathbf{f}$ : $\mathrm{i} 1=1, \because 1=\times 1 \mathrm{Cl}$ <br> Digital output $f: \exists i l=1, \exists 1=x 0$ <br>  | $\begin{aligned} & \text { disabled } \\ & \text { UFseale } \\ & \text { Downscale } \\ & \text { Subst.val. } \end{aligned}$ | $\leftarrow$ |
| Xkorr | Measured value correction off Measured value correction adjustable | of $f$ or | $\leftarrow$ |
| $\begin{aligned} & \times 9 \\ & \times 106 \end{aligned}$ | Physical value at $0 \%$ <br> Physical value at $100 \%$ only effective with standard <br> signals $(0 / 4.20 \mathrm{~mA}$ or $0 / 2.10 \mathrm{~V})$ | $\begin{array}{\|l} \hline-29999 \text {... } 999999 \\ -29999 \text {... } 999999 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 0 \\ 100 \\ \hline \end{array}$ |
| XFヨil | Substitute value with sensor error | -29999 ... 999999 | O |
| Tfr | Filter time constant [s] | $0 . . .999999$ | 0,5 |

## Input value conditioning

Before the pre-filtered (time constant ...; limiting frequency ...) analog input signals are available as digitized measurement values with physical quantity, they are subjected to extensive input value processing.

## Input circuit monitor

Transducers are monitored for break and short circuit.
$\square$ Current signals Out-of-range monitoring ( $1>21,5 \mathrm{~mA}$ ) with current signals $(0 / 4 . . .20 \mathrm{~mA})$ and short-circuit monitoring ( $1<2 \mathrm{~mA}$ ) with "life zero" signals are provided.
 'Subst. Val' defined in the configuration (Fail) can be used for the input circuit.

## Scaling

The mA standard signals are scaled according the the physical measuring range of the transmitter ( $\times \mathbb{0}, \times 1 \mathbf{1} \overline{1}$ ). With potentiometric transducer measurements, "calibration" is according to the proven method. Bring the transducer to start and then to end position and "calibrate" to $0 \%$ or $100 \%$ by key pressure. The calibration principle corresponds to scaling, whereby gradient and zero offset are calculated automatically by the firmware.

## Filter

A 1st order filter is adjustable in addition to filtering in the analog part of each input signal.

## Sampling intervals

The sampling interval for INP6 is 400 ms .

## Measured value correction

Measured value correction can be used for various types of measurement correction.

In most cases, the relative rather than the absolute accuracy and reproducibility are of interest, e.g.:

- measurement error compensation in a working point ( control)
- minimization of linearity errors within a limited operating range (variable )
- correspondence with other measuring facilities (recorders, indicators, PLCs, ...)
- compensation of sensor, transmitter, etc. sample differences.

The measured value correction is designed both for zero offset, gain matching and for both. It corresponds to scaling $m x+b$, with the difference that the KS 98-1 firmware calculates gain $m$ and zero offset $b$ from the defined value pairs for process value ( $\mathrm{x} 1 \mathrm{in} ; \times 2 \mathrm{in}$ ) and ( $\times 1$ out.; $\times 2$ out. ) of two reference points.

For a comparative measurement with a calibrated measuring device the standard values for für $x 1$ in, $x 1$ out (0) and $x 2$ in, x2 out (100) must be entered first.

## Example 1:

Zero offset

$$
\begin{array}{ll}
\times 1 i r=100 & \times 1 \text { out }=100+1,5 \\
\times 2 i r=300 & \times 2 \text { out }=300+1,5
\end{array}
$$

The corrected values are shifted evenly with reference to the input values over the complete range.

## Example 2:

Gain change (rotation around the coordinate origin)

$$
\begin{array}{ll}
\times 1 i r=0 & \times 1 \text { out }=0 \\
\times 2 i r & =300
\end{array}
$$

The corrected values diverge despite equality with the input values at $\times 1$ iri and $\times 1$ out.

## Example 3:

Zero and gain matching

$$
\begin{array}{ll}
\times 1 i r=100 & \times 1 \text { out }=100-2,0 \\
\times 2 i r=300 & \times 2 \text { out }=300+1,5
\end{array}
$$

The corrected values are already shifted at input values $\times 1$ in and $\times 1$ out. and diverge additionally.

Fig. 101


## Sensor types

The input sensor type can be defined as potentiometric transducer or as standard current signal.

## Potentiometric transducer

The admissible overall resistance is $\leq 1000 \Omega$ incl. $2 \bullet$ RL. Calibration or scaling are with the sensor connected.

Before calibration, the mains frequency required during operation must be adjusted.

Calibration is as follows.

 tion). The instantaneously valid value for INP6 is displayed ' X '. Press the selector key again to store this actual value as $X_{0}$.
 the position corresponding to $X_{100}$ (mostly upper end position). The instantaneously valid value for INP6 is displayed ' X '. Press the selector key again to store this actual value as $\mathrm{X}_{100}$.

Input 6 to which a potentiometric transducer is connected features a particularity: only the wiper resistance rather than the overall resistance is measured. For this reason, the internal parameter setting and calculation of the input 6 transducer is not identical with the one of input 1.
These calibration values belong to the engineering, i.e. when replacing the instrument, the user calibration remains un changed. As a prerequisite, it has to be re-loaded into the engineering after calibration.

## Standard 0/4... 20 mA current input

The input resistance is $50 \Omega$
During configuration, distinction between $0 \ldots 20 \mathrm{~mA}$ and $4 \ldots 20 \mathrm{~mA}$ is made. For standard $4 \ldots 20 \mathrm{~mA}$ signal, the signal behaviour with sensor break can be defined (Faill). Additionally, physical input signal scaling using a defined value of K 0 and $\mathbb{K} \mathbf{1 0}$ is possible. For measured value processing, a filter time constant with a numeric value within 0,0 and 200000 can be adjusted $(\rightarrow \mathrm{T} \mathbf{~ f r i})$

## III-17.4 DINPUT ( digital inputs (No. 121))



Function ‘DINPUT' is used for digital input configuration and parameter setting. The function is assigned firmly to block number 91 and is calculated invariably in each time slot. Inversion of each individual signal can be configured. If inputs di3...di12 are provided is dependent of the KS 98-1 hardware option.

## Outputs

## Digital outputs:

| z1... $\mathrm{z}^{2}$ | Signal at digital input 11 or -2 z (Digital inputs i 1 and -2 are available in each unit also without options). |
| :---: | :---: |
| z3... $\overline{\text { F }}$ |  |
| Z8... 12 |  |

Parameter and configuration data

| Parameter Description |  |  | Values | Default |
| :---: | :---: | :---: | :---: | :---: |
| Inv1 | Transfer behaviour | diroct outcrat. | direct. | $\leftarrow$ |
|  |  | inveroted but.Fut. | inverse. |  |
| Inv2 | Transfer behaviour | direot output | dirert | $\leftarrow$ |
|  |  | inverted gut.Fut. | inverss.e |  |
|  |  |  |  |  |
| Inu12 | Transfer behaviour | direct output | direct. | $\leftarrow$ |
|  |  | inverted output | inversee |  |

## III－18 Outputs

## III－18．1 OUT1 and OUT2（ process outputs 1 and 2 （No．116，117））



Functions OUT1 and OUT2 are used for process output OUT1 and OUT2 configuration and parameter setting．Depend－ ent of hardware，the outputs can be analog or relay outputs．Function OUT1 is firmly allocated to block number 81， function OUT2 is firmly allocated to block number 82．They are calculated invariably in each time slot．

With digital input 1 used as signal source，it is switched to the digital output as specified in lione on an instru－ ment with relay output．With continuous output，switch－over is between 0 and 20 mA as with a logic output．

Analog input $\times 1$ used as signal source is taken to the continuous output linearly between $\times 6$ and $\times 1 \mathbf{1}$ dependent of configuration．With switching output（relay or logic），switching from $\times \mathbf{0}$ to $\times 1 \mathbf{D} \mathbf{~}$ is from $50 \%$（hysteresis $=1 \%$ ）．

Inputs／outputs

| Digital input： |  |
| :--- | :--- |
| d1 | Input signal with digital signal conversion |

## Analog input：

| $\times 1$ | Input signal with analog signal conversion |
| :--- | :--- |

## Configuration parameters：

| Parameter | Description |  | Values | Default |
| :---: | :---: | :---: | :---: | :---: |
| Sros | Signal source | Digital input 1 | Diヨital | $\leftarrow$ |
|  |  | Analog input $\times 1$ | Aroblog |  |
| （100 | Signal source action | direct／normally open | direct | $\leftarrow$ |
|  |  | inverse／normally closed | inverses |  |
| T＇efe | Function of the continuous output | logic 0／20 mA | 10ヨic |  |
|  |  | 0．．． 20 mA | 6．． 20.2 mH | $\leftarrow$ |
|  |  | 4．．．20mA | 4．． 20.2 mF |  |
| x 0 | Analog input value $\times 1$ at 0\％ |  | －29 999 ．．． 999999 | 0 |
| 人1616 | Analog input value $\times 1$ at $100 \%$ |  | －29 999 ．．． 999999 | 100 |

## III－18．2 OUT3（ process output 3 （No．118））



83


Function OUT3 is used for process output OUT3 configuration and parameter setting．
This analog output is provided only with hardware option C．
The function is firmly allocated to block number 83，it is calculated invariably in each time slot．

With digital input 11 used as signal source，it is switched over between 0 and 20 mA as a output．
Analog input $\times 1$ used as signal source is taken to the continuous output linearly between $x \overline{0}$ and $\times 1 \mathbf{0} \mathbf{0}$ according to configuration．

## Inputs／outputs

| Digital input： | Input signal with digital signal conversion |
| :--- | :--- |
| －11 |  |


| Analog input： | Input signal with analog signal conversion |
| :--- | :--- |
| $\times 1$ |  |

Configuration parameters：

| Parameter | Description |  | Values | Default |
| :---: | :---: | :---: | :---: | :---: |
| Sros | Signal source | Digital inputal | Diヨital |  |
|  |  | Analog input $\times 1$ | Aroblog | $\leftarrow$ |
| Mode | Signal source action | direct／normally open | direot | $\leftarrow$ |
|  |  | inverse／normally closed | inverses |  |
| T＇IF： | Continuous output function | logic 0／20 mA | 10ヨiに |  |
|  |  | 0．．． 20 mA | 6．．．26me | $\leftarrow$ |
|  |  | 4．．． 20 mA | 4．．．201m |  |
| x 0 | Analog input value $\times 1$ at 0\％ |  | －29 999 ．．． 999999 | 0 |
| 人160 | Analog input value $\times 1$ at $100 \%$ |  | －29 999 ．．． 999999 | 100 |

## III-18.3 OUT4 and OUT5 ( process outputs 4 and 5 (No. 119...120))



Functions OUT4 and OUT5 are used for process output OUT4 and OUT5 configuration and parameter setting. These two relay outputs are always provided as standard. Function OUT4 is firmly allocated to block number 84, function OUT5 is firmly allocated to block number 85. They are calculated firmly in each time slot.

With digital input used as signal source, it is switched to the relay output as specified in line If analog input $x 1$ is used as signal source, switching from $\times 6$ to $\times 10$ is from $50 \%$ (hysteresis $=1 \%$ ).

## Inputs / outputs

| Digital input: | Standard signal with digital signal conversion |
| :--- | :--- |
|  |  |


| Analog input: |  |
| :--- | :--- |
| $\times 1$ | Input signal with analog signal conversion |

Configuration parameter:

| Parameter | Description |  | Values | Default |
| :---: | :---: | :---: | :---: | :---: |
| Sros | Signal source | Digital input d1 | Diヨital | $\leftarrow$ |
|  |  | FAnalog input $X 1$ | Aralog |  |
| (10) | Signal source action | direct/normally open | こiroot | $\leftarrow$ |
|  |  | , invers/normally closed | iruerse |  |
| $\times \mathrm{C}$ | Analog input value $\times 1$ at 0\% |  | -29999 ... 999999 | 0 |
| $\times 1010$ | Analog input value $\times 1$ at 100\% |  | -29 999 ... 999999 | 100 |

## III－18．4 DIGOUT（ digital outputs（No．122））



Function＇DIGOUT＇is used for digital output configuration and parameter setting．It is firmly allocated to block number 95 and is calculated invariably in each time slot．Inversion of each individual signal can be configured．If all digital out－ puts are provided is dependent the KS 98－1 hardware option．

Inputs

| Digital inputs： |  |
| :---: | :---: |
| －1．．．94 | Signal sources for control of digital outputs 1 to 104 ． <br> （Digital outputs 1 to 104 are provided only in units with hardware option B）． |
| $01 . .04$ | Signal sources for control of digital outputs do 5 and 6 ． <br> （Digital outputs and and are provided only in units with hardware option C）． |

## Parameter and configuration data

| Parameter | Description |  | Values | Default |
| :---: | :---: | :---: | :---: | :---: |
| Inv1 | Transfer behaviour for d1 | direct output | －irert | $\leftarrow$ |
|  |  | inverted output | inversee |  |
| Inu2 | Transfer behaviour for d2 | direct output | direct | $\leftarrow$ |
|  |  | inverted output | iヶver•e |  |
| ： | ： |  |  | ： |
| ： |  |  |  | ： |
| Inve | Transfer behaviour for d6 | direct output | －irert | $\leftarrow$ |
|  |  | inverted output | iヶver｀se |  |

## III-19 Additional functions

## III-19.1 LED (LED display (No. 123))



Function LED is used for control of the 4 LEDs. It is firmly allocated to block number 96 and is calculated in each time slot. The statuses of digital inputs 1 . . . d 4 are output to LED 1. . . 4 . The statuses can be inverted via parameter Iru.

## Inputs:

| Input | Description |
| :---: | :--- |
| $\mathbf{d z}$ | LED 1 |
| d. | LED 2 |
| d4 | LED 3 |

## Parameters:

| Parameter | Description | Range | Default |
| :---: | :---: | :---: | :---: |
| Inv 1 |  | 0... 1 | 0 |
| Inv 2 | $\operatorname{lnv2}=0 \wedge \mathrm{~d} 2=1$ LED2 is lit $\operatorname{lnv2}=1 \xlongequal{\text { d }} \mathrm{d} 2=0$ LED2 is lit | 0... 1 | 0 |
| Inv 3 | $\operatorname{lnv} 3=0 \wedge \mathrm{~d} 3=1$ LED3 is lit $\operatorname{lnv} 3=1 \xlongequal{\text { ¢ }} \mathrm{d} 3=0$ LED3 is lit | $0 . . .1$ | 0 |
| Inソ 4 | $\operatorname{lnv4}=0 \wedge$ へ $4=1$ LED4 is lit $\operatorname{lnv} 4=1 \wedge$ ¢ $4=0$ LED4 is lit | $0 . . .1$ | 0 |

## Example:

If a simple flashing function is to be produced, this is possible with the following example.
The sampling-time period code of the NOT-function indicates the flash frequency.


## III-19.2 CONST ( constant function (No. 126) )



16 analog constants at output $\lrcorner 1$. - , $\exists 16$ and logic statuses 0 and 1 are made available. The block number is firmly configured with 99 .

Outputs:

## Digital outputs

| 0 | Logic 0 is always output at this output. |
| :---: | :---: |
| 1 | Dis |

$1 \quad$ Logic 1 is always output at this output.

| Analog outputs |  |
| :---: | :---: |
| $\because 1$ | Constant C 1 is output. |
| $\pm 2$ | Constant C 2 is output. |
| - | Constant C S is output. |
| $\cdots 4$ | Constant C 4 is output. |
| - | Constant C : 5 is output. |
| - 6 | Constant C G is output. |
| $\square 7$ | Constant C 7 7 is output. |
| '81 | Constant CB is output. |
| 49 | Constant C 9 is output. |
| -19 | Constant C 16 is output. |
| ' 11 | Constant C 11 is output. |
| -12 | Constant C 12 is output. |
| $\pm 13$ | Constant C 13 is output. |
| '14 | Constant C 14 is output. |
| -15 | Constant C 15 is output. |
| -16 | Constant C 16 is output. |

## Parameters:

| Parameter | Description | Range | Default |
| :--- | :--- | :--- | :---: |
| ©1.. ©16 | Analog constants | $-29999 \ldots 999999$ | 0 |

## III-19.3 INFO ( information function (No. 124) )



This function can be used for display of 12 user texts with max. 16 characters each by setting the relevant input - $1 ., \quad 12$. The information is displayed in the "header" of operating pages (level 1 data) in alternation with the description of the called up operating page. If several texts are available simultaneously, they are displayed succes sively.
The block number is fixed to 97 and calculated once per time slot.
The user texts are displayed on the operating pages and the operating page list.
Display of all INFO texts can be suppressed by setting the Hide signal.

## Inputs:

| Digital inputs |  |
| :---: | :---: |
| d1 | $=1 \rightarrow$ the information configured in Text. 1 is displayed. |
| d2 | $=1 \rightarrow$ the information configured in Text 2 is displayed. |
| ds | $=1 \rightarrow$ the information configured in Text. 3 is displayed. |
| d4 | $=1 \rightarrow$ the information configured in Text. 4 is displayed. |
| d5 | $=1 \rightarrow$ the information configured in Text 5 is displayed. |
| d6 | $=1 \rightarrow$ the information configured in Text. 6 is displayed. |
| d7 | $=1 \rightarrow$ the information configured in Text. 7 is displayed. |
| d8 | $=1 \rightarrow$ the information configured in Text. 8 is displayed. |
| d9 | $=1 \rightarrow$ the information configured in Text. 9 is displayed. |
| d10 | $=1 \rightarrow$ the information configured in Text. 10 is displayed. |
| d11 | $=1 \rightarrow$ the information configured in Text. 11 is displayed. |
| d12 | $=1 \rightarrow$ the information configured in Text. 12 is displayed. |
| hide | $=1 \rightarrow$ all INFO texts are hidden, i.e. not displayed. |

## Parameters:

| Parameter | Description | Range | Default |
| :---: | :--- | :--- | :--- |
| Text.1 | User text with max. 16 characters each | alphanumeric <br> characters | >INFORMATION $1<$ <br> Text.12  |

## III-19.4 STATUS ( status function (No. 125))



The function provides information from the KS 98-1 instrument status byte at its digital outputs. The block is fixed to 98 and updated per time slot.

| digital Inputs |  |
| :--- | :--- |
| C-hide | With c-hide $=1$, a configuration change via operation is disabled. |
| F-hide | $=1$ parameters/configurations via operation disabled |
| m-hide | $=1$ The main menu is not displayed, operating pages are displayed only during online mode. |
| b-bloulk | $=1$ The use of the bus interface is blocked. |
| pwrchk | $=1 \rightarrow$ Monitoring for temporary power failure is activated. <br> See output pwrchk. |
| colour | green $=0$, red $=1$. $\rightarrow$ The display background colour is changed. |
| di-inv | Display is inverted (background / text\&graphics). |

## Analog inputs

UI:r.L.Erī $\begin{aligned} & \text { Change to user language. Switch-over between text blocks connected via the language input. Three languages } \\ & \text { are selectable with } 0 . .2\end{aligned}$

| Output | Description |
| :---: | :---: |
| Mirute | Minute of the real－time clock 0．．． 59 |
| Hours | Hour of the real－time clock 0．．． 23 |
| D．ヨ＇ | Day of the real－time clock 0．．． 31 |
| Morith | Month of the real－time clock 1．．．12 |
| Year | Year of the real－time clock 1970．．．． 2069 |
| Weこk－D | Weekday of the real－time clock $0 . .6 \wedge$ ¢ Su．．．．Sa |
|  | Language German $=0$ language English＝ 1 Language selection is in Miscell．aneous，Device data |
| P：ヨヨ®トロ | Output of the number of the function block the operating page of which is displayed instantaneously．＂0＂means that no operating page is displayed． |
| SesError | Start－up problem．Unlessthis output is＂0＂，a start－up error occurred（corresponds to KS 98－1 start－up error dis－ play）．Bit assignment：Bit $1=$ reset command，bit $2=$ quartz，bit $4=$ halt，bit $5=$ SW watchdog（endless loop）；the other bits are not used． |


| Digital outputs |  |
| :---: | :---: |
| E－hide | ＝ 1 configuration change disabled |
| F－hide | ＝ 1 parameters／configurations disabled |
| m－hide | ＝ 1 The main menu is not displayed，the operating pages are displayed only during online mode |
| b－block | ＝ 1 the use of the bus interface is blocked |
| switch | S．I．L．switch open $=0$ closed $=1$ ．This information permits blocking via the hardware． |
| f．ail | $=1$ common message sensor error of inputs AINP1．．．AINP6 |
| こヨfe | $=1$ safety status set via interface with code 22，Fbno．0，Fctno． 0 |
| Fいい「した！ | Power－fail check．This value is always reset（0）by KS 98－1 after power－on．It can be set to active（1）by a signal at the digital input to permit detection of a temporary power failure． |
| $s t . a r$ t． | With change from offline to online，start is 1 during 800 ms ．During this time，all time groups were calculated at least once． |
| － $\mathrm{SFOr}^{\text {ar }}$ | Collected error messages Profibus |
| Clouk | $1=$ real－time clock provided， $0=$ no real－time clock option． |
| ¢ぐき | Status of the function key |

1）These outputs are $=0$ if real－time clock option $B$ with RS 422 is missing．

## Powerup KS98／98－1

## Start－up behaviour after power recovery．

The procedure is as follows：
（1）All blocks are initialized．Unless a special start－up behaviour is configured（see programmer），the two possibili－ ties are：
a．The memory contents are still unchanged．The block outputs keep the value before power failure．
b．After prolonged power failure，the memory contents are destroyed．The function blocks are initiated regardless of the function inputs．
（2）All input functions are calculated once．
（3）The start bit of the status block is set to 1 ．
（4）All blocks are calculated at intervals of 1.6 seconds（ 16 cycles of the 100 ms time slot）in the order of block numbers．
（5）The start bit of the status block is set to 0 ．

In the event of problems due to the start-up sequence, 2 items can be of importance:
(1) After power failure, KS 98/98-1 continues running during fractions of seconds and may still detect already de-activated process signals.
(2) If the behaviour after power recovery is different depending on whether the function blocks are still in the pre vious condition or whether they were initialized, the following engineering can provide the initialization infor mation within the first 1.6 seconds after starting up.


Another possibility for power failure detection is to set an internal flag in the status block via digital input "pwrchk" at the end of the initialization phase. This Flag is available at digital output "pwrchk". After power failure, this flag and thus digital output "pwrchk" is always initialized with 0.

## III-19.5 CALLPG (Function for calling up an operating page (no. 127))



With function block CALLPG, which can be used only once, event-triggered call-up of a particular operating page is possible, unless an operation is being carried out on this page (waiting time 5 s ). The required operating page is deter mined by the number of its function block. The block number is applied to input BI-no of CALLPG.
Switch-over is with the positive edge of the logic signal at digital input d1 of CALLPG. It permits e.g. changing to a par ticular operating page in case of an exceeded limit value.
Exceptions: Switching over is omitted with:
active operation by the operator. Page changing is delayed and occurs only 5 seconds after the last key pressure. a wrong page number, or if the page is blocked at activation time.

Unless the page which should be activated is available the page survey is displayed.
When leaving the operating page called up via CALLPG, the previously active operating page is displayed again.
Following functions blocks have an operating page APROG, DPROG, CONTR, CONTR+, PIDMA, VWERT, VBAR, VTREND, VPARA, ALARM

With activation by CALLPG from an already selected page, this page is not called up again. I. e. if a sub-page was selected, the multifunction unit remains on this page.

With multiple page changing by activation of CALLPG, the sequence is not buffered. After leaving the page(s) activated by CALLPG the initial menu page is displayed again.

In case of CALLPG whilst the multifunction unit is not at operating level (main menu: Parameter, ... Miscellaneous), CALLPG call remains active in the background. Changing to the operating page activated by CALLPG is done when selecting the operating level for the next time.

Digital input
-1 $\quad$ Positive edge causes change to the operating page set at BI -no

## Analog input

Bl-ros

## III-19.6 SAFE ( safety function (No. 94))



Function SAFE is used for generation of defined analog output values and digital statuses dependent of digital input select or of the status received via the interface. In the normal case select $=0$ and status $=0$, the values applied to the inputs are switched through to the outputs without change. For select = 1 or status $=1$, configured data $\mathbf{\Sigma} 1 \ldots \mathbf{\Sigma} \mathbf{B}$ and - 1 ... -8 are switched through to the outputs.

## III-19.7 VALARM (display of all alarms on alarm operating pages (function no. 109)



## General

Function block VALARM handles up to 8 alarms. Alarms are displayed and can be acknowledged, if acknowledgement via parameter setting is required. The alarm conditions are determined by digital inputs a1 ... a8 (0 alarm condition off, 1 alarm condition on).

## Inputs/outputs

| Digital inputs: |  |
| :--- | :--- |
| hide | Display of this alarm operating page is suppressed |
| lou-k | Operation of this operating page is disabled, i.e. alarm acknowledgement is not possible |
| $\mathbf{~ B 1 . . . \Xi 8}$ | Alarm inputs alarms $1 \ldots 8$ |


| Analog output |  |
| :--- | :--- |
| BL-roo | Number of this block |

## Digital outputs



## Parameter und Konfigurationsdaten

| Parameter |  |
| :---: | :---: |
|  | =1 means that alarm 1 must be acknowledged |


| Parameter | Description | Values | Default |
| :---: | :---: | :---: | :---: |
| T'ヨF-ヨ1 : - |  | Duit. | $\leftarrow$ |
|  | Alarm function | Hoput |  |

## VALARM operating page

Fig. 104
(1) Title
(2) Active alarm selected for acknowledging
(3) Active alarms with texts from the text-function
(4) Active alarms with standardtexts
(5) Alarm no more active, but not acknowledged
(6) Alarm no more active (if the display is rebuilded with 융-key, this alarm is no more displayed)


Several alarm blocks can be positioned. Block numbers 41-46 are available for this purpose. When using several alarm blocks, display of all alarm blocks except one should be suppressed, because all alarms including those of the blocks which are not selected are listed on each VALARM operating page.
The operating page title indicates the instantaneously selected block. With alarm blocks, user language selection rela ted to the title is possible by enabling another block with a language-dependent title dependent on selected user language.

In order to avoid disturbance of the user-specific menu structure, the alarm page is displayed at the end of the opera ting page list independent of its block number.
Lines on the alarm page contain entries corresponding to the following classification.

- No alarm : not existing or marked as deleted "- $\qquad$ -"

> refreshed at next page actualization

- Alarm active :

Line blinks on the operating page

- Alarm active and acknowleged:
- Alarm not active , no ackn.: Normal display with ">>>" at the end of the display line

The alarms are displayed with the definable name in the order of occurrence. The displayed name is taken from two text blocks which should be connected with the ALARM block. Without connected text blocks, the alarm number is displayed. The alarm numbers are calculated from block number -40 and the number of the digital input. The block numbers are 41-46, i.e. the 3rd alarm in block 41 (1st block) becomes 13.

To prevent alarm position changing, "- $\qquad$ -" is displayed for disappearing alarms. New pending alarms are displayed only when rebuilding up the page. Build-up can be started also by pressing key 융 $^{\text {. }}$

The combination of digital input and output signals indicates the four statuses of an alarm: active + not acknowledged ( $\mathrm{di}=1, \mathrm{do}=1$ ), active and acknowledged ( $\mathrm{di}=1, \mathrm{do}=0$ ), not active any more and not acknowledged ( $\mathrm{di}=0, \mathrm{do}=1$ ), and not active or not active any more and acknowledged ( $\mathrm{di}=0, \mathrm{do}=0$ ).

## III-20 Modular I/O - extension-modules

The modular C-Card offers the possibility, to adjust the kind and type of process in- and outputs to the plant. Despite of following limitation, up to four modules can be fitted as desired.

## Performance limits

Due to the maximum permissible self-heating, the number of analog output modules is limited. The total of performance factors (P-factor, $\rightarrow$ Technical data must not exceed 100\%! Exceeded performance limits are displayed in the engineering tool.

## Performance factor of the modules



This means:
Max. one I_OUT-module (any socket)!
Max. one U_OUT-module, if there is already a current output module (but in different, galvanically isolated module groups)!

## Example:

current output module on slot 1 or 2 and voltage output module on slot 3 or 4 .
The total of $P$ factors is $95 \%$. I.e. 1 more resistance or $1 \mathrm{TC} / \mathrm{mV} / \mathrm{mA}$ module can be fitted.
Galvanic isolation: Slots 1-2 are galvanically isolated from 3-4.

## III-20.1 TC_INP (analog input card TC, mV, mA)



Analog input, plugs into modular options card C. The function TC_INP is used for configuration and parameter setting of the analog inputs TE_INF'. Calculation of the inputs is fixed to once per time slot.

| Digital outputs： |  |
| :---: | :---: |
| clotid | 0 ＝correct module fitted |
| slotio | 1 ＝wrong module fitted |
| f．eil＿ヨ | $0=$ no measurement error at channel a detected |
|  | 1 ＝measurement error at channel a detected；e．g．sensor break |
| ¢．ail＿も | $0=$ no measurement error at channel $b$ detected |
|  | 1 ＝measurement error at channel $b$ detected；e．g．sensor break |

## Analog outputs：

Irfo＿a $\quad$ measurement value channel a
IrIF＿b $\quad$ measurement value channel b

| Parameter | Beschreibung | Values | Default |
| :---: | :---: | :---: | :---: |
| 人1．${ }^{\text {P }}$ in | Measured value correction Inp＿a，P1 input value | Real | 0 |
| $\times 1 . j 0 t$ | Measured value correction Inp＿a＿P1 output value |  | 0 |
| x2a iri | Measured value correction Inp＿a，$\overline{\text { 2－}}$－input value |  | 100 |
| $\times 2.0$ dt | Measured value correction Inp＿a，P2 output value |  | 100 |
| $\times 1 \mathrm{Cl}^{\text {人 }}$ | Measured value correction Inp＿b，¢1－input value |  | 0 |
| $\times 160$ | Measured value correction Inp＿b＿P1 output value |  | 0 |
| $\times 2 \mathrm{~b}$ 1r | Mēasured value correction Inp＿b，$\overline{\text { P2 }}$－input value |  | 100 |
| x2bout | Measured value correction Inp＿b，P2 output value |  | 100 |


| Configuration | Description | Values | Default |
| :---: | :---: | :---: | :---: |
| T•日F＿ヨ <br> T・ヨF＿b | Type L－200．．． $900{ }^{\circ} \mathrm{C}$ | 00 | 30 |
|  | Type J－200．．． $900{ }^{\circ} \mathrm{C}$ | 01 |  |
|  | Type K－200．．． $1350^{\circ} \mathrm{C}$ | 02 |  |
|  | Type N－200．．． $1300^{\circ} \mathrm{C}$ | 03 |  |
|  | Type S－50．．． $1760{ }^{\circ} \mathrm{C}$ | 04 |  |
|  | Type R－50．．． $1760^{\circ} \mathrm{C}$ | 05 |  |
|  | Type T－200．．． $400^{\circ} \mathrm{C}$ | 06 |  |
|  | Type W（C）0．．． $2300^{\circ} \mathrm{C}$ | 07 |  |
|  | Type E－200．．． $900{ }^{\circ} \mathrm{C}$ | 08 |  |
|  | Type B 0．．． $1820{ }^{\circ} \mathrm{C}$ | 09 |  |
|  | Type＿Do．．． $2300^{\circ} \mathrm{C}$ | 10 |  |
|  | Voltage $0 . . .30 \mathrm{mV}$ | 27 |  |
|  | Voltage 0．．．100mV | 28 |  |
|  | Voltage 0．．．300mV | 29 |  |
|  | SStandard signal ō．．． $200 \mathrm{~m} \overline{\mathrm{~A}}$ | $30^{-}$ |  |
|  | Standard signal 4．．． 20 mA | 31 |  |
| $\begin{aligned} & \text { Fail_ヨ } \\ & \text { Fヨil_b } \end{aligned}$ | Switched off | 0 | 1 |
|  | Upscale，Inp＿a（Inp＿b）＝x100＿a（x100＿b） | 1 |  |
|  | Downscale，Inp＿a（lnp＿b）＝x0＿a（x0＿b） | 2 |  |
|  | Substitute value，Inp＿a（lnp＿b）＝XaFail（XbFail） | 3 |  |
| Xakar゙ャ Xberor | Measured value correction Inp＿a（b）switched off | 0 | 0 |
|  | Measured value correction Inp＿a（b）effective | 1 |  |
| Drit－g | Unit of the measured value of Inp＿a $(\mathrm{b})={ }^{\circ} \mathrm{C}$ | 1 | 1 |
| Urit＿b | Unit of the measured value of Inp＿a（b）$={ }^{\circ} \mathrm{F}$ | 2 |  |
| こTK＿ヨ | Internal temperature compensation | 1 | 1 |
| GTK＿b | External temperature compensation | 2 |  |
| $\times$ 人 $0^{\text {a }}$ | Physical value Inp＿a（Inp＿b）at 0\％ | Real | 0 |
|  | Physical value İnp＿a（lnp＿b）at $100 \%$ | Real | 100 |
| K̇（b）Fail | Physical value Inp＿a（Inp＿b）at 0\％ | Real | 0 |
|  | Filter time constant of＿a（Inp＿b）in seconds | Real | 0，5 |
| Tkref゙ ${ }^{\text {a（b）}}$ | Reference temperature for Inp＿a（b）at STK＿a（b） | Real | 0 |

## III－20．2 F＿Inp（frequency／counter input）



The frequency／counter input plugs into the modular options card C．The F＿INP is used for configuration and parameter setting of input $\mathbf{F}_{\text {＿}} \mathrm{I} \cdot \mathbf{F} \cdot \mathbf{F}$ ．Input calculation is fixed to once per time slot．

| Digital inputs： |  |
| :---: | :---: |
| resert a | 1 ＝the value for Irir＿a is reset to 0 ． |
| Stor ヨ | 1 ＝the instantaneous value for InF＿－．remains unchanged． |
| 「こことを b | 1 ＝the value for IriF＿b is reset to 0 ． |
| stor b | 1 ＝the instantaneous value for I $\boldsymbol{1}$ F－＿bremains unchanged． |


| Digital outputs： |  |
| :---: | :---: |
| slotid | 0 ＝correct module fitted |
| slotiv | 1 ＝wrong module fitted |
| f．eil | 1 ＝inserted module is detected，but no communication to the module． |
| I－G | signal status of HW input a |
| Z＿b | signal status of HW input b |
| ロu＿ヨ | 1 ＝frequency at HW input a exceeds the maximum permissible 20 kHz |
| OU＿b | 1 ＝frequency at HW input b exceeds the maximum permissible 20kHz |


| Analog outputs |  |
| :--- | :--- |
| IrIF＿a | output value for channel a |
| IriF＿b | output value for channel b |


| Configuration | Description | Values | Default |
| :---: | :---: | :---: | :---: |
| Furic＿e | Diglnput $\rightarrow$＿con－trol input | 0 | 1 |
|  | Count＿1 $\rightarrow$ up counter | 1. |  |
|  | Count 2－－$\rightarrow$ up／down counter | 2 |  |
|  | Count＿3 $\rightarrow$ up／down counter with direction signal | 3 |  |
|  | Count＿4＿$\rightarrow$＿quadrature signal | 4 |  |
|  | Frequenz $\rightarrow$ fre－quency measuring | 5 |  |
| Fırıú＿b | Diglnput $\rightarrow$＿con－trol input | 0 | 1 |
|  | Count＿1＿$\rightarrow$ up upounter |  |  |
|  | Frequenz $\rightarrow$ frequency measuring | 5 |  |
| Tiが而 | for frequency measuring in seconds | 0，1．．． 20 | 10 |

## III－20．3 R＿Inp（analog input card ）



Analog input card for Pt100／1000，Ni 100／1000，resistance and potentiometer
Analog input，plugs into modular options card C．The R＿INP is used for configuration and parameter setting of analog inputs $\mathrm{F}_{\mathbf{\prime}} \mathrm{I}|\cdot| \cdot \mathbf{F}$ ．Input calculation is fixed to once per time slot．

| Digital inputs： |  |
| :--- | :--- |
| gover | calibration disabled |
| hide | calibration display suppressed |


| Digital outputs： |  |
| :---: | :---: |
| Elotid | 0 ＝correct module inserted |
|  | 1 ＝wrong module inserted |
| f．ai l＿a（b） | $0=$ no measurement error at channel $\mathrm{a}(\mathrm{b})$ detected |
|  | 1 ＝measurement error at channel a（b）；e．g．sensor break |
|  | Status of manual key（ 可 $^{\text {a }}$ ）$\rightarrow 0=$ automatic |
|  | Status of manual key（（융）$\rightarrow 1$＝manual |
| 1ヶローヨ（b） | $=1 \rightarrow \boldsymbol{\Delta}$－key pressed |
| ごぐヨ（し） | $=1 \rightarrow \boldsymbol{\nabla}$－key pressed |

## Analog inputs：

$Y$ Y． $\bar{G}(b)$ position feedback

## Analog outputs：

| Anar＿a | measured value channel $a$ |
| :--- | :--- |
| IriF＿b | measured value channel $b$ |


| Parameter | Description | Value | Default |
| :---: | :---: | :---: | :---: |
| x1． | Measured value correction Inp＿a，P1 input value | Real | 0 |
| $\times 1$ ¢01t | Measured value correction Inp＿a，P1 output value |  | 0 |
| x2白 ir | Measured value correction Inp＿a， P 2 input value |  | 100 |
| x2alut | Measured value correction Inp＿a，P2 output value |  | 100 |
| $\times 16 \mathrm{ir}$ | Measured value correction Inp＿b， P 1 input value |  | 0 |
| x160ut． | Measured value correction Inp＿b，P1 output value |  | 0 |
| $\times 2 \mathrm{~b}$ | Measured value correction Inp＿b，P2 input value |  | 100 |
| $\times 2 \mathrm{colot}$ | Measured value correction Inp＿b，P2 output value |  | 100 |


| Configuration | Description | Value | Default |
| :---: | :---: | :---: | :---: |
| T・ヨF＿ヨ <br> T・ヨF＿b | Pt100（850）－200 ．．． $850{ }^{\circ} \mathrm{C}$ | 00 | 0 |
|  | Pt100（100）－200 ．．． $100^{\circ} \mathrm{C}$ | 01 |  |
|  | Pt1000（－1）－200 ．．． $850^{\circ}{ }^{\circ} \mathrm{C}$ | 02 |  |
|  | Pt1000（－2）－200 ．．． $100^{\circ} \mathrm{C}$ | 03 |  |
|  | Ni100 $60 \ldots 180^{\circ} \mathrm{C}$ | 04 |  |
|  | Ni1000－60 ．．． $180^{\circ} \mathrm{C}$ | 05 |  |
|  |  | 06 |  |
|  | R450 resistance 0 ．．． 4500 hm | 07 |  |
|  | R1600 resistance 0 ．．． 16000 hm | 08 |  |
|  | R4500 resistance 0 ．．． 45000 Ohm | 09 |  |
|  | Potentiometer 160 Potentiometer $0 \ldots 160 \mathrm{hm}$ | 10 |  |
|  | Potentiometer 450 Potentiometer 0 ．．． 4500 hm | 11 |  |
|  | Potentiometer 1600 Potentiometer 0．．． 1600 Ohm | 12 |  |
|  | Potentiometer 4500 Potentiometer 0．．． 4500 Ohm | 13 |  |
|  | Switched off | 0 | 1 |
|  | Upscale，Inp＿a（Inp＿b）＝x100＿a（x100＿b） | 1 |  |
|  | Downscale，Inp＿a（lnp＿b）＝x0＿a（x0＿b） | 2 |  |
|  | Substitute value，Inp＿a（lnp＿b）＝XaFail（XbFail） | 3 |  |
| Kakorr Kbkorr | Measured value correction Inp＿a（b）switched off | 0 | 0 |
|  | Measured value correction Inp＿a（b）effective | 1 |  |
| $\begin{aligned} & \text { Urit_a } \\ & \text { Urit_- } \end{aligned}$ | Unit of the measured value of Inp＿a（b）$={ }^{\circ} \mathrm{C}$ | 1 | 1 |
|  | Unit of the measured value of Inp＿a（b）$={ }^{\circ} \mathrm{F}$ | 2 |  |
| Mode | IriF－a and Irozer 2－wire connection | 0 | 0 |
|  | Irip－as－wire connectionno Irioz | 1 |  |
|  |  | 2 |  |
| $\times 6$ | Physical value Inp＿a（lnp＿b）at 0\％ | Real | 0 |
| $\times 16 \mathrm{l}$ | Physical value Inp＿a（lnp＿b）at 100\％ | Real | 100 |
| Ka（b）Fail | Substitute value with sensor error at Inp＿a（b） | Real | 0 |
| Tf「や＿ヨ（b） | Filter time constant of＿a（Inp＿b）in seconds | Real | 0，5 |
| Kal＿1．${ }_{\text {c }}$（b） | 1st calibration value Inp＿a（b）（read only） | Real | 0 |
| Kal＿2a（b） | 2nd calibration value Inp＿a（b）（read only） | Real | 100 |

## III-20.4 U_INP (analog input card -50...1500mV, 0...10V)



Analog input, plugs into modular options card. The U_INP is used for configuration and parameter setting of the analog input II_IトFF'. Input calculation is fixed to once per time slot.

| Digital outputs: |  |
| :---: | :---: |
| slotid | 0 = correct module fitted |
|  | 1 = wrong module fitted |
| ¢.قil_ヨ | $0=$ no measurement error at channel a detected |
|  | 1 = measurement error at channel a detected; e.g. sensor break |
| ¢.ail_b | $0=$ no measurement error at channel b detected |
|  | 1 = measurement error at channel b detected; e.g. sensor break |

## Analog outputs:

| IriF_-a | measured value channel $a$ |
| :--- | :--- |
| IriF_b | measured value channel $b$ |


| Parameter | Description | Value | Default |
| :---: | :---: | :---: | :---: |
| x1． | Measured value correction Inp＿a，P1 input value | Real | 0 |
| $\times 1.00$ dt | Measured value correction Inp＿a，P1 output value |  | 0 |
| x2．3 in | Measured value correction Inp＿a，P2 input value |  | 100 |
| $\times 2.0$ lut | Measured value correction Inp＿a，P2 output value |  | 100 |
| $\times 16 \mathrm{in}$ | Measured value correction Inp＿b，P1 input value |  | 0 |
| $\times 160$ | Measured value correction Inp＿b，P1 output value |  | 0 |
| $\times 2 \mathrm{~b}$ in | Measured value correction Inp＿b，P2 input value |  | 100 |
| x2bilut． | Measured value correction Inp＿b，P2 output value |  | 100 |


| Configuration | Description | Value | Default |
| :---: | :---: | :---: | :---: |
| T＇EF－＿${ }^{\text {a }}$ | Voltage 0．．．10V <br> Voltage－50．．． 1500 mV | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | 0 |
| Fail＿ヨ | Switched off | 0 | 1 |
|  | Upscale，Inp＿a＝x100＿a | 1 |  |
|  | Downscale，Inp＿a＝x0＿a | 2 |  |
|  | Substitute value，Inp＿a＝XaFail | 3 |  |
| Xakorr | Measured value correction Inp＿a switched off | 0 | 0 |
|  | Measured value correction Inp＿a effective | 1 |  |
| T＇EF－b | Voltage 0．．．10V | 0 |  |
| TヨF＿O | Voltage－50．．． 1500 mV | 1 | 0 |
| Fail＿b | Switched off | 0 | 1 |
|  | Upscale，Inp＿b＝x100＿b | 1 |  |
|  | Downscale，Inp＿b＝x0＿b | 2 |  |
|  | Substitute value，Inp＿b＝XbFail | 3 |  |
| Xbe $\mathrm{Or}^{\circ} \mathrm{r}$ | Measured value correction Inp＿b switched off Measured value correction Inp＿b effective | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | 0 |
| 36］．${ }^{\text {a }}$ | Physical value Inp＿a at 0\％ | Real | 0 |
| x106－ | Physical value Inp＿a a t 100\％ | Real | 100 |
| K日F： | Substitute value with sensor error at Inp＿a | Real | 0 |
| Tf「¢゙ヨ | Filter time constant of Inp＿a in seconds | Real | 0，5 |
| x 0 | Physical value Inp＿b at 0\％ | Real | 0 |
| x1606 | Physical value Inp＿b at 100\％ | Real | 100 |
| YbFail | Substitute value with sensor error at Inp＿b | Real | 0 |
| Tf゙ri＿b | Filter time constant of Inp＿b in seconds | Real | 0，5 |

## III-20.5 I_OUT (analog output card 0/4...20mA, +/-20mA)



Analog output, plugs into modular options card C. The I_OUT is used for configuration and parameter setting of analog output I _OIT. Output calculation is fixed to once per time slot.

| Digital output: |  |
| :--- | :--- |
| ミlot.ial | $0=$ correct module fitted |
|  | $1=$ wrong module fitted |


| Analog inputs: |  |
| :---: | :---: |
| X_, ${ }^{\text {A }}$ | output value for channel a |
| X_b | output value for channel b |


| Configuration | Description | Values | Default |
| :---: | :---: | :---: | :---: |
|  | 0...20mA | 0 | 0 |
|  | $\begin{aligned} & \hline \ldots 20 \mathrm{~mA} \\ & +/-20 \mathrm{~mA} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 1 \\ 2 \\ \hline \end{array}$ |  |
| <6]_3 | Physical value Inp_a at 0\% | Real |  |
| x160. | Physical value Inp_a at $\overline{100} \overline{\%}$ | Real | 100 |
| T'EF_b | 0...20mA | 0 | 0 |
|  | $\begin{aligned} & 4 . . .20 \mathrm{~mA} \\ & +/-20 \mathrm{~mA} \end{aligned}$ | $\begin{array}{\|l\|} \hline 1 \\ 2 \end{array}$ |  |
| < $0^{2}$ - $b$ | Physical value Inp_b at 0\% | Real |  |
| $\times 160$ | Physical value Inp_b at $100 \%$ | Real | 100 |

## III-20.6

U_OUT (analog output card 0/2...10V, +/-10V)


Analog output, plugs into modular options card C. The U_OUT is used for configuration and parameter setting of analog output II_OIIT. Output calculation is fixed to once per time slot.

Digital output:

| Slotic | $0=$ correct module fitted |
| :--- | :--- |
|  | $1=$ wrong module fitted |


| Analog inputs: |  |
| :---: | :---: |
| X_, ${ }^{\text {A }}$ | output value for channel a |
| X_b | output value for channel b |


| Configuration | Description | Values | Default |
| :---: | :---: | :---: | :---: |
| T- $=1$ F-a | $\begin{aligned} & 0 . . .10 \mathrm{~V} \\ & 2 \ldots \mathrm{~V} \\ & + \text { +-10V } \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 1 \\ 2 \\ \hline \end{array}$ | 0 |
| x $0_{1}$ - | Physical value Inp_a at 0\% | Real | 0 |
| 人106-a | Physical value Inp_a at 100\% | Real | 100 |
| T'EF-_b | $\begin{aligned} & \hline \hline 0 \ldots . .10 \mathrm{~V} \\ & 2 \ldots . .10 \mathrm{~V} \\ & +/-10 \mathrm{~V} \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline \hline 0 \\ 1 \\ 2 \\ \hline \end{array}$ | 0 |
| x ${ }^{\text {an_b }}$ | Physical value Inp_b at 0\% | Real | 0 |
| 人100] | Physical value Inp_b at $100 \%$ | Real | 100 |

## III-20.7 DIDO (digital input/output card)



Digital input/output card, plugs into modular options card C. The DIDO is used for configuration and parameter setting of digital inputs/outputs DIDDI. Function block calculation is fixed to once per time slot.

| Digital inputs: |  |
| :--- | :--- |
| -d 1 | if configured as an output: hardware output a |
| -2 Z | if configured as an output: hardware output b |

## Digital outputs:

| Elotid | 0 = correct module fitted |
| :---: | :---: |
|  | 1 = wrong module fitted |
| I 1 | status of hardware input a; if configured as an output: the output value read back |
| I2 | status of hardware input b; if configured as an output: the output value read back |


| Configuration | Description | Values | Default |
| :---: | :---: | :---: | :---: |
| Inv_Ia | direct - HW input di1 direct at z1 |  | 0 |
|  | inverse - HW input di1 inverted at 21 | 1 |  |
| Inv_Ib | direct - HW input di2 direct at $z 2$ |  | 0 |
|  | inverse - HW input di2 inverted at z2 | 1 |  |
| Inv_ | direct - d1 direct on HW output do1 |  | 0 |
|  | inverse - d1 inverted at HW output do 1 |  |  |
| Inv_Ob | direct - d1 direct on HWoutput do1 | 0 | 0 |
|  | inverse - d2 inverted on HW output do2 | 1 |  |
| Mode_a | Input - only HWW input d1 at z1 | 0 | 0 |
|  | Output - d1 at HW output do 1 with feedback at z1 |  |  |
| Mooderb | Input - only HW input d2 at z2 | 0 | 0 |
|  | Output - d2 at HW output do2 with feedback at z2 |  |  |

## III-21 Function management

Max. 450 function blocks can be used. Each function requires a defined portion of the working memory and a defined calculation time. The used up resources can be examined in the engineering Tool under Help / Statistics.

## III-21.1 Memory requirement and calculation time

| Function | Time \% Memory\% |  |
| :---: | :---: | :---: |
| Scaling and calculating functions |  |  |
| ABSV | 0,4 | 0,2 |
| ADSU | 0,9 | 0,3 |
| MUDI | 0,9 | 0,3 |
| SORT | 1,3 | 0,2 |
| SCAL | 3,2 | 0,2 |
| 10EXP | 3,0 | 0,2 |
| EEXP | 1,6 | 0,2 |
| LN | 1,6 | 0,2 |
| LG10 | 1,6 | 0,2 |


| Non-linear functions |  |  |
| :--- | :--- | :--- |
| LINEAR | 0,5 | 0,5 |
| GAP | 0,3 | 0,2 |
| CHAR | 0,9 | 0,5 |


| Trigonometric functions |  |  |
| :--- | ---: | ---: |
| SIN | 1,4 | 0,2 |
| COS | 2,0 | 0,2 |
| TAN | 1,4 | 0,2 |
| COT | 2,9 | 0,2 |
| ARSIN | 2,4 | 0,2 |
| ARCCOS | 2,4 | 0,2 |
| ARCTAN | 1,8 | 0,2 |
| ARCCOT | 1,9 | 0,2 |

Logic functions

| AND | 0,2 | 0,2 |
| :--- | :--- | :--- |
| NOT | 0,2 | 0,2 |
| OR | 0,2 | 0,2 |
| EXOR | 0,2 | 0,2 |
| BOUNCE | 0,3 | 0,2 |
| FLIP | 0,2 | 0,2 |
| MONO | 1,0 | 0,3 |
| STEP | 0,8 | 0,3 |
| TIME1 | 1,2 | 0,3 |


| Signal converters |  |  |
| :--- | :--- | :--- |
| AOCTET | 0,5 | 0,5 |
| ABIN | 1,5 | 0,3 |
| TRUNC | 0,3 | 0,2 |
| PULS | 0,9 | 0,2 |
| COUN | 0,4 | 0,3 |
| MEAN | 0,9 | 0,9 |

Time functions

| LEAD | 0,7 | 0,3 | C_KS8x | 3,0 | 0,8 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| INTE | 0,6 | 0,3 | KS8x | 0,3 | 0,3 |
| LAG1 | 0,5 | 0,2 | CPREAD | 0,5 | 0,5 |
| DELA1 | 0,9 | 1,9 | CPWRIT | 0,5 | 0,5 |
| DELA2 | 0,9 | 1,9 | CSDO | 0,5 | 0,5 |

Function Time \% Memory\%

| Programmer |  |  |
| :--- | :--- | :--- |
| APROG | 7,5 | 3,2 |
| APROGD | 0,3 | 0,5 |
| APROGD2 | 0,3 | 0,5 |
| DPROG | 3,0 | 3,0 |
| DPROGD | 0,3 | 0,5 |


| Controller |  |  |
| :--- | :---: | :---: |
| CONTR | 7,0 | 3,1 |
| CONTR + | 7,2 | 3,5 |
| PIDMA | 11,5 | 0,5 |

Inputs

| AINP1 | 0,5 | 0,5 |
| :--- | :--- | :--- |
| AINP3 | 0,4 | 0,3 |
| AINP4 | 0,4 | 0,3 |
| AINP5 | 0,4 | 0,3 |
| AINP6 | 0,5 | 0,5 |
| DINPUT | 0,3 | 0,3 |
| Outputs |  |  |
| OUT1 | 0,9 | 0,3 |
| OUT2 | 0,9 | 0,3 |
| OUT3 | 0,9 | 0,3 |
| OUT4 | 0,9 | 0,2 |
| OUT5 | 0,9 | 0,2 |
| OUT5 |  |  |
| DIGOUT | 0,2 | 0,3 |

Additional functions

| LED | 0,2 | 0,2 |
| :---: | :---: | :---: |
| CONST | 0,2 | 0,4 |
| INFO | 0,2 | 0,9 |
| STATUS | 0,4 | 0,3 |
| CALLPG | 0,2 | 0,5 |
| SAFE | 0,3 | 0,5 |
| VALARM | 0,6 | 0,5 |
| Modular Option C |  |  |
| TC_Inp | 0,5 | 0,5 |
| F_Inp | 0,9 | 0,2 |
| R_Inp | 0,9 | 0,7 |
| U_Inp | 0,9 | 0,4 |
| I_Out | 0,5 | 0,2 |
| U_Out | 0,5 | 0,2 |
| DIDO | 0,5 | 0,2 |

## III-21.2 Sampling intervals

The table opposite shows the sampling intervals for conversion of the input signals into internal values and conversion of the internal values into output signals (hardware conversion). The sampling interval for software calculation of function blocks AINP1, AINP3...AINP6, DINPUT, STATUS, CONST, LED, INFO, OUT1...OUT5 and DIGOUT is 100 ms .

| Input or output | Sampling interval |
| :--- | :--- |
| INP1 | at intervals of 200 ms |
| INP3 / INP4 | at intervals of 100 ms |
| INP5 | at intervals of 800 ms |
| INP6 | at intervals of 400 ms |
| di1...di12 | at intervals of 100 ms |
| OUT1...OUT5 / do1...do6 | at intervals of 100 ms |

Calculation of the other function blocks is at equal intervals according to their allocation to the 8 time slots of 100 ms each. Allocation of a block to one or several time slots (at intervals of 100, 200, 400 or 800 ms ) is in the engineering. For each block, the engineering tool provides an identification (ts) which can be used to determine the allocation from the table opposite.
The total of calculation times of all required function blocks must be $<100 \%$ for each time slot.


## III-21.3 EEPROM data

Data are stored in non-volatile EEPROM. The manufacturers specify approx. 100000 permissible write cycles per EEPROM address, in reality, however, this value can mostly be exceeded by a multiple. If parameters and configura tions are changed exclusively manually, exceeding the max. number of write cycles is almost precluded. With digital interface or automatic parameter changes, however, taking the maximum number of write cycles into account is indis pensable, and measures against excessively frequent parameter writing must be take

## III-22 Examples

During installation of the engineering tools, several examples were included. These are in path:
C:IPmatools\Et98\prijexample

## III-22.1 Useful small engineerings

## Cascaded counter with pulse generator(

ZAEHLER.EDG)
An INTE is used for generating pulses.
Max. parameter $=1$, time constant to 3600 sec. An input value at x 1 of e.g. 20 weighted via the MUDI generates 20 pulses per hour. The first counter counts to 1000, the second counter counts the (1000s) overflows.

## Simple password function

(PASSWORT.EDG)
A VWERT is used for password entry. The output is not fed back to the input, for suppressing display of the entered value after pressing the enter key.
The current hour of the status block is used as a password (only with clock). The EQUAL block determines the condition for disabling the parameter level.

## Password from the CONST block

(PASSWORD.EDG)
A VWERT is used for password entry. The output is not fed back to the input, for suppression of the display of the en tered value after pressing the enter key. A value of the constant block is used as a password. The EQUAL block determines the condition for disabling the parameter level and display suppression of the VWERT page.

## Macro for dynamic alarm processing

(ALARMSEL.EDG)
ASELV2 can be used to select one of 4 values for alarm processing.
An ALLV compares the value with an upper and a lower limit definable via a VWERT.
The alarms are displayed at the second VWERT and output to a relay via an OR. Each of the two VWERT can define or display two further alarm limits. Therefore, the configuration can be extended by another ALLV. As an example, possible alarm acknowledgement via a flipflop is provided. Alarms are held in the LED display and the alarm line until ac knowledgment via the VWERT (alarms) .

## Alarm acknowledgement of 5 alarm bits

(ALAMQUIT.EDG)
The flipflops hold the alarms individually until acknowledgement via the VWERT. The acknowledge output is fed back to the Store input instead of the corresponding input bit.
Thereby, the acknowledge bit is reset automatically.

## Alarm acknowledgement of 5 alarm bits,

(ALOITSAV.EDG)
which are not lost also after prolonged power failure
Flipflops are also used for storing. In this case, the status change of the flipflop must be stored in non-volatile recipe blocks. Moreover, the flipflops must be loaded with the content of the recipe block for restoring the last status after power recovery. In VWERT, the alarms are displayed and acknowledged, if necessary.
Further display via LED, DIGOUT and INFO.

## Parameter number display via texts

(PRNRE.EDG)
The current parameter number (variable in VWERT) is compared with constants via EQUAL.
With equality, a bit at VWERT is set, whereby a digital text is displayed.

## Two-point operation of a programmer

(RUNFLIP1.EDG)
As entry of commands via the operating page is not possible with a programmer, if the relevant digital inputs were connected, the toggle key (fkey:a/m) must be used for realizing the Run/Stop order on the operating page. A monoflop generates a short pulse on the positive and negative flank.
The external command (key or switch) from the control panel via d1 is also taken via a monoflop. With a key, only d1 (positive flank) is connected, with a switch, d1 and d2 are connected (positive and negative flank). The pulses are taken to a flipflop, which switches over between Run and Stop.

## Weekly timer for a switch-on and a switch-off time

(SCHALTUHR.EDG)
Prerequisite: options card B with clock. 3 ADSUs convert the day, hour, minute information from the status block and the switch-on/switch-off time from VWERT into a minute value. If the time from the status block is higher than the switch-on time, the flipflop is set, if the time is higher than the switch-off time, the flipflop is reset.

## Recipe input via VWERT

(REZEPT2.EDG)
Three configuration examples with different restrictions for operation.
The VWERT displays its own outputs, but not the actually selected recipe. Editing of an existing recipe is not possible.
The VWERT displays the selected recipe, but only, when storage was done after editing. The current values disappear after pressing the Enter key. VWERT has an additional edit function. This bit was applied to the manual input of the recipe block for output of the currently changed values on the display via the operating page. When storing and switch ing over to the next the recipe number (ALLP), the edit mode is reset automatically via OR and AND (due to the handling order).

## III-22.2 Controller applications

Minimum controller configuration
(C_SINGL.EDG)

## Ratio controller with split-range or

three-point stepping controller with position feedback (C_V_SPL.EDG)
The position feedback input is defined as a potentiometric transducer (which can be calibrated) and linked to the controller with its fail, a/m, inc, dec outputs. The use of process outputs can be configured at the controller and OUT1/OUT2.

Slave controller for testing the start of internal switching functions
(C_SW_SL.EDG)
Circuit proposal for cascade configurations
(KASK.EDG)
The master controller correcting variable must follow the slave or process value, when the slave is switched to inter nal or manual mode, in order to ensure bumpless return to the automatic mode.

## Programmer fragments

## Analog output with 4 recipes (2*20 segments 2*10 segments)

(PROG.EDG)
Selection of the recipe/program no. is via the VWERT and cannot be selected any more via the programmer operating page. The ALLP limits the input range.
Caution: the display is correct, however, the edit buffer contains the last output value, which may be too high. Entry of the preset time is via the programmer operating page. For input of the preset time via a VWERT, the digital connection (PRESET) must be provided.

## Programmer with coupled outputs

(PROG2.EDG)
The programmer blocks are coupled for program number, elapsed net time and RUN / RESET commands.

## III-23 Index

## 0-9

| $0 / 2 \ldots . .10 \mathrm{~V}$ signals | 279 |
| :--- | ---: |
| 10EXP | 91 |
| 10s exponent | 91 |
| 10s logarithm | 93 |
| 20F3 | 142 |
| 2-out-of-3 selection with mean value information | 142 |

## A

ABIN
114-115
Absolute value 89
ABSV
Addition/subtraction
Additional functions
ADSU
AINP1
AINP3...AINP5
AINP6
ALARM
Alarm and limiting with fixed limits
Alarm and limiting with variable limits
alarm processing
ALLP
ALLV
Analog input 1
Analog input 6
Analog input card (R_INP)
Analog input card (TC_INP)
Analog input card (U_INP)
Analog input module
Analog inputs 3... 5
Analog output card (I_OUT)
Analog output card (U_OUT)
Analog output module
Analog programmer
Analog-binary conversion
Analog-pulse conversion
AND
AND gate
AOCTET
APROG

- Cascading
- Recipes

APROG data
APROGD
ARCCOS
ARCCOT

ARCSIN
ARCTAN
104
Arcus cosinus function 103
Arcus cotangent function 104
Arcus sinus function 102
Arcus tangent function 104

## B

Bargraph display 160
BOUNCE 107

## C

Controller functions 269-271
C_KS8x 184
C_RM2x 174
Calculation time 307
Calculation time and memory requirement 307
Calibration 35
CALLPG 293
CANopen fieldbuscoupler 174
CAN-PDO read function 191
CAN-PDO write function 192
CAN-SDO function 193-198
Cascadable variable selection 144
CHAR 98
Communication

- CANopen 173-180
- Cross communication KS 98-1 - KS 98-1 181-182
- ISO 1745 169-172
- Profibus DP 171
- RM-Modules 173

Comparison 149
Connecting diagram, general 24-25
Connecting diagram, i/o-modules 28-29
Connection KS 800/816 183-186
Connection of KS 800/816 183-186
CONST 290
constant function 290
Constant function 290
Constant selection 135
CONTR 221
CONTR+
222-223
Control behaviour

- Continuous controller / split range 236
- Signaller, 1 output 226-237
- Signaller, 2 outputs

227

- Three-point controller 230
- Three-point stepping controller 234
- Triangle / star / off 232
- Two point controller 228

Control function for difficult processes 245-247
Controller ABC 269-271

| Controller application |  |
| :---: | :---: |
| - Cascade optimization | 256 |
| Controller applications | 254-257,310-314 |
| - Cascade control | 255 |
| - Controller front-panel operation | 254-257 |
| - Faulty wiring of a cascade | 257 |
| - Flow control | 257 |
| - Multiple cascade | 257 |
| - Status display | 255 |
| - Switchover disabling | 254 |
| Controllerfunction with one parameterset | 221 |
| Controllerfunction with up to six param. sets | 222-223 |
| COS | 99 |
| Cosinus function | 99 |
| COT | 101 |
| Cotangent function | 101 |
| COUN | 119 |
| Counter | 119 |
| CPREAD | 191 |
| CPWRIT | 192 |
| CRCV | 181 |
| CSDO | 193-198 |
| CSEND | 182 |
| D |  |
| Data type conversion | 113 |
| Dead band (GAP) | 97 |
| Debouncer | 107 |
| DELA1 | 128 |
| DELA2 | 129 |
| Delay time | 128-129 |
| D-flipflop | 108 |
| DIDO | 306 |
| Differentiator | 123 |
| Digital input/output card (DIDO) | 306 |
| Digital inputs | 284 |
| Digital output module | 175 |
| Digital outputs | 288 |
| Digital programmer | 217 |
| DIGOUT | 288 |
| DINPUT | 284 |
| Display / definition of process values | 155-159 |
| Display of alarms | 295-296 |
| Division/multiplication | 90 |
| Down/up counter | 119 |
| DPREAD | 171 |
| DPROG | 217-220 |
| DPROG data | 217-220 |
| DPROGD | 217-220 |
| DPWRIT | 172 |

## E

E function 92
EEPROM data 308
EEXP 92
Electrical connection 23-28
Engineering-Tool

- First steps

77-80

- Function keys 81
- Installation 52 - 53
- Menu reference $54-67$
- Mousekey functions 82
- Operation 68-76
- Survey 51
- Tips and tricks 81-88

EQUAL 149
Exclusive OR gate 107
EXOR 107
Exponent (10s) 91
EXTR 133
Extreme value selection 133

## F

F_INP 299
FILT 130
Filter 127
Filter with tolerance band 130
FLIP 108
Flipflop 108
Frequency counter input (F_INP) 299
Function blocks 87
Function for calling up operating pages 293
Function generator 98
Function of wire-hook switches 21

## G

Galvanic isolations 24
GAP 97

## H

Hold amplifier 135

I/O extensions with CANopen 173-180
INFO 291
Information function 291
Input value conditioning

- Filter 275
- Input circuit monitor 276
- Linearization 275
- Measured value correction 275
- Scaling 275

INTE 125
Integer portion ..... 116Integrated position controller
Integrator ..... 250
Inverter ..... 105 ..... 105
K
KS 800/816 node function184
KS 98-1 cross communication ..... 81-182
KS800/816 controller function
KS8x185-186
185-186
L
L1READ ..... 169
L1WRIT ..... 170
LAG1
LEAD127LED
LED display123
Level1 data reading via PROFIBUS ..... 171
Level1 data writing via PROFIBUS ..... 172
LG10LIMITLimiting and limit value signallingLINEAR
Linearization function
LNLogarithm (10s)Logarithm (natural)
Logic functions
M
MEAN121
Mean value formation ..... 121Measured value correctionMemory requirement
Memory requirement and calculation time
MONO
Monoflop274307307
Mounting109
109
MUDI20-22Multiple alarm90
Multiplication/division ..... 90151
N
Natural logarithm92
Non-linear functions ..... 97
NOT ..... 105

## 0

Online/Offline ..... 35
Operating pages ..... 36-47

- Alarm display ..... 37
- Bargraph display ..... 36
- Cascade controller ..... 46-47
- Controller ..... 41-45
- Graphic trend curve ..... 37
- List display ..... 36
- Programmer ..... 38-40
- Zoom value scale ..... 37
Operation
- Adjusting values ..... 33
- Front view ..... 30-33
- Menu structure ..... 31
- Navigation, page selection ..... 32
Optimizing the controller ..... 238
- Characteristic values ..... 238
- Empirical optimization ..... 239
- Process at rest monitoring ..... 240
- Process characteristics ..... 238
- Self tuning ..... 240-243
- Setpoint reserve ..... 242
OR ..... 106
OR gate ..... 106
OUT1 and OUT2 ..... 285
OUT3 ..... 286
OUT4 and OUT5 ..... 287
Output selection ..... 139
Outputs ..... 285
P
Process characteristics ..... 238,261
Parameter operation ..... 163
Parameter selection ..... 137
PEAK ..... 134
Peak value memory ..... 134
PIDMA ..... 245-247
- Control parameters ..... 251
- Threepoint stepping (Yp) ..... 250
- Thronoff ..... 250
- Xsh ..... 250
Potentiometric transducer ..... 278
Potentiometric transducer calibration ..... 278
Process at rest monitoring (PiR) ..... 252
Process output 3 ..... 286
Process outputs 1 and 2 ..... 285
Process outputs 4 and 5 ..... 287
Process value calculation
- Bumpless switchover ..... 268
- Correcting variable processing ..... 265
- Limiting control ..... 267
- Material batching and mixing ..... 264

| - Override (limiting) control | 267 |
| :---: | :---: |
| - Ratio controller | 263 |
| - Standard controller | 263-268 |
| - Three element control | 265 |
| Programmer |  |
| - Access to parameters/ inactive recipes | 213 |
| - Cascading | 203 |
| - Controlling a program | 39 |
| - Manual mode | 41 |
| - Master/slave operation | 213 |
| - Parameter setting | 39 |
| - Recipes | 203 |
| - Search run | 209 |
| - Segment types | 40 |
| - Selecting a program | 38-40 |
| - Sequence changes | 208 |
| - Wiring | 214 |
| Programmer (digital) | 217 |
| PULS | 117 |
| R |  |
| R_INP | 300-301 |
| Rate-of-change limiting | 150 |
| RC protective circuitry | 24 |
| Read level1 data | 169 |
| Read level1 data via PROFIBUS | 171 |
| Receive module | 181 |
| Recipe change | 203 |
| Recipe management | 140 |
| Recipe names | 204 |
| Resistance thermometer | 277 |
| REZEPT | 140 |
| RM 201 | 174 |
| RM basic modules | 173 |
| RM_Al | 176-177 |
| RM_A0 | 178 |
| RM_DI | 175 |
| RM_DMS | 179-180 |
| RM_DO | 175 |
| RM200 digital input module | 175 |
| RM211, RM212, RM213 | 173 |
| S |  |
| Set-point reserve | 241,260 |
| SAFE | 294 |
| Safety function | 294 |
| Safety notes | 10-11 |
| Sampling intervals | 308 |
| SCAL | 91 |
| Scaling | 91 |
| Scaling and calculating functions | 89 |
| SELC | 135 |

SELD ..... 136
Selection and storage ..... 133
Selection of digital variables ..... 136
Selection of output ..... 139
Self-tuning

- Controlled adaptation ..... 243
- Preparation ..... 240-243
- Process at rest ..... 240
- Self-tuning cancellation ..... 241
- Self-tuning start ..... 241
- Self-tuning with heating and cooling processes ..... 243
- Self-tuning with heating process ..... 242
- Setpoint reserve ..... 241
- Signification of s.-t. messages ORes1/ORes2 ..... 243
- Start from automatic mode ..... 241
- Start from manual mode ..... 242
SELP ..... 137
SELV1 ..... 138
SELV2 ..... 144
Send module ..... 182
Sensor types ..... 277
Sequence control ..... 110
Sequencing ..... 110
Setpoint
- Setpoint / setpoint cascade ..... 258
- W2 - safety setpoint ..... 258
Setpoint functions ..... 258-262
- External setpoint ..... 259
- General ..... 258
- Gradient control ..... 259
- Process-value tracking ..... 261
- Terminology ..... 258
- Tracking ..... 260
Signal inputs
- INP1 ..... 277
SIN ..... 99
Sinus function ..... 99
Small controller ABC ..... 269-271
SOUT ..... 139
Split range ..... 236
SQRT ..... 90
Square root function ..... 90
Standard 0/4. 20 mA current signals ..... 279
STATUS ..... 292
Status function ..... 292
STEP ..... 110
Step function for sequencing ..... 110
Strain gauge module ..... 179-180
Subtraction/addition ..... 89
Switch $\_$off value ..... 201,219
, TAN ..... 100
Tangent function ..... 100
TC_INP ..... 297-298
Technical data ..... 12-17
TEXT ..... 153-154
Text container ..... 153-154
Thermocouple ..... 277
Thronoff ..... 250
Time functions ..... 123
TIME1 ..... 111
Timer ..... 111-112
TIMER ..... 111
TIMER2 ..... 132
Trend display ..... 165
Trigonometric functions ..... 99
TRST ..... 135
TRUNC ..... 116
U
U_INP ..... 302-303
U_OUT ..... 305
Up/down counter ..... 119
Useful small engineerings ..... 309
V
VALARM ..... 295-296
VALARM operating page ..... 296
Variable selection ..... 138
VBAR ..... 160
VELO ..... 150
Versions ..... 18-19
Visualization ..... 155
VPARA ..... 163
VTREND ..... 165
VWERT ..... 155
W
Write level1 data ..... 170
Write level1 data via PROFIBUS ..... 172


[^0]:    <Blocknummern> <Block numbers>: Displays the engaged block numbers out of the Engineering.
    The block numbers can be altered. Thus, the according parameters can be transferred to an other equivalent function block or a group of blocks (programmer). By this way it is e.g. also possible to transfer interval times Tp from an anaolog programmer into a digital programmer, but the digital values (states) will be changed as well!
    Caution: A validity check will not be carried out !

[^1]:    ＊1）with the engineering tool broken rational numbers can be used；however only the integral portion is taken over！

[^2]:    Analog inputs：
    $\times 1 \ldots \times 6$ Analog process values，which can be read via the PROFIBUS

[^3]:    Digital inputs
    -1...do 8 s for digital inputs 1 to 8

[^4]:    1) The values are specified in the process value unit - e.g. $\left[{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}\right.$, bar, \%, etc.]
    2) The rate of change must be specified in units /minute (e.g. ${ }^{\circ} \mathrm{C} / \mathrm{min}$ ).
    $\rightarrow$ see gradient control page 261.
