Industrial controller KS 94

Anhalt

1. Front view 5
2. Safety notes 5
3. Electromagnetic compatibility 5
4. Technical data \rightarrow data sheet, order no. 949873728233 5
5. Maintenance / Behaviour in case of trouble 6
6. Further information. 6
7. Mounting 6
8. Electrical connections 7
8.1 Notes 7
8.2 Connecting input INP1 7
8.3 Connecting input INP6 8
8.4 Connecting input INP5 8
8.5 Connecting the power supply 8
8.6 Connecting the outputs OUT 2/4/5 8
8.7 Connecting output OUT1 8
8.8 Digital inputs and outputs (di / do) 8
8.9 Connecting the bus interface 9
8.10 Connecting the inputs INP3 / INP4 9
8.11 Connecting the output OUT3 9
8.12 Versions with integr. supply voltage 10
9. Operation (survey) 11
9.1 The menus 1... 3 11
9.2 The operating level 11
9.3 Operating the programmer: 12
9.4 Calibration: 12
9.5 DAC - motor actuator monitoring (Digital Actor Control DAC®) 13
9.6 Self-tuning (automatic optimization of control parameters) 13
9.7 Parameter and configuration level 14
10. Configuration. 15
10.1 General 15
10.2 Basic structure 15
10.3 Main groups 18
10.4 CONTR: Controller 19
10.5 SOURCE: Input signal allocation 21
10.6 INPUT: inputs 23
10.7 OUTPT: outputs 27
10.8 ALARM: alarms 31
10.9 TUNE:self-tuning 32
10.10 DISP: User interface for operation 32
10.11 AUX: Additional functions 33
10.12 Examples of configuration 35
11. Parameters 36
11.1 General 36
11.2 Set-point function 38
11.3 Time function 38
11.4 Programmer functions 38
11.5 Alarm function 39
11.6 Self-tuning. 39
11.7 Control algorithm 40
11.8 Input processing 41
11.9 Miscellaneous 42
11.10 Signals 42
12. Versions 43
13. 43
13.1 Input and output allocation with pre-configured units. 44

Symbol definition:

- Locking screw: Locks the controller module in the housing.
- LEDs: indicates the statuses of controller outputs Y1, Y2 and alarms LIM1, LIM2 (other settings at configuration level $5.800 \rightarrow$ page 30).
- Display 1: indicatess process value at operating and parameter level, or the configuration code at configuration level.
- Display 2: indicates the set-point (automatic mode) or the correcting value (manual mode) in operating level. The values are adjustable directly with $\boldsymbol{\Delta} \boldsymbol{\nabla}$. Further displays at operating level \rightarrow page 9 . In parameter and configuration level, values and codes described with textl are indicated $(\rightarrow$ page 12).
- Text 1: indicates the short-form dialogue or the unit of display 2.
- Text 2: indicates the output bargraph (other selections possible in configuration level C.800). Keys $\quad \underset{\sim}{0} \boldsymbol{\nabla} \Omega$: For the certain function \rightarrow pages 9 and 12 .
- PC interface: PC connection for configuration/parameter setting/operation with an engineering tool.

2. Safety notes

Following the enclosed safety instructions 949904707101 is indispensable!
The insulation of the instrument conforms to EN 61 010-1 with pollution degree 2, overvoltage category III, operating voltage 300 V and protection class I. Additional with horizontal installation, a protection to prevent live part, e.g. wire ends, from dropping into the open housing of a withdrawn controller must be fitted.

3. Electromagnetic compatibility

The instrument conforms to European Directive 89/336/EEC and will be provideed with the CE-marking. The following European Generic Standards are met: Emission: EN 50081-2 and Immunity: EN 50082-2. The unit is suitable for use in industrial areas (in residential areas, RF interference may occur). The electromagnetic radiation can be reduced decisively by installing the unit in a grounded metal switch cabinet.
4. \quad Technical data \rightarrow data sheet, order no. 949873728233

Maintenance / Behaviour in case of trouble

5. Maintenance / Behaviour in case of trouble

The controller needs no maintenance. The rules to be followed in case of trouble are:

- Check mains (voltage, frequency and correct connections), • check, if all connections are correct,
\cdot check the correct funktion of the sensors and final elements, • check the configuration words for required functions and \bullet check the adjusted parameters for required operation. If the controller still does not work properly after these checks, shut down the controller and replace it.
Cleaning:Housing and Front can be cleaned by means of a dry, lint-free cloth. No use of solvents or cleansing agents!

6. Further information

A manual with the order no. 949904044811 gives further information to the chapters of this operating notes.

7. Mounting

S.I.L. switch: with the switch closed, transition to parameter and configuration level is disabled. When making an attempt to change over to the parameter level, " ${ }^{\circ} \cdot \boldsymbol{a r} \cdot \boldsymbol{\exists}$ " is displayed (text1). Correcting variable, set-point and parameters at the "extended operating level" remain available for selecting and changing. For access to the S.I.L. switch, release the locking screw and withdraw the instrument module from the housing. Subsequently, re-insert the controller module into the housing and mount it with screws.

Protection mode IP65: 4 fixing clamps must be used. The instruments insert must be placed strongly an locked strongly by means of the locking screw.

Caution! The instrument contains ESD-hazarded components.

Electrical connections

8. Electrical connections

* Versions with integrated supply voltage (connection example look at page 10)

8.1 Notes

The ground connection of earth terminal A11 (terminal P13 with continuous controllers, too) should be kept separate from the mains and as short as possible (15 cm during test). Keep mains cables separate from signal and measurement input leads. We recommend twisted and screened measurement input leads (screen contacted to measurement earth).
When connecting a contactor to a relay output, an RC protective circuit is necessary, to avoid voltage peaks which can cause trouble to the controller.
\square Individual or common fuse protection must be fitted (1 A per instrument).

8.2 Connecting input INP1 1

Input for main process value x 1 (actual value).

$x 1$		Thermocouple	b	Resistance thermometer (Pt 100)		Temperature difference ($७ 1-\vartheta 2$) ($2 \mathrm{x} \operatorname{Pt} 100$)
	d	Potentiometric transducer	e	Current (0/4...20mA)		Voltage (0/2...10V)

Electrical connections

8.3 Connecting input INP6 2

For position feedback with 3-point stepping controller (other selections possible in configuration level [. 18: it).

8.4 Connecting input INP5 3

Input for process value x2 or external set-point or external set-point offset (configuration level L. 48 A). With voltage signals, A6 must be connected to the reference potential at A9.

8.5 Connecting the power supply (5)

Depending on the version, the instrument is supplied with: $90 \ldots . .250$ V AC or 24 V UC. The 24 V UC version is for $19,2 \ldots 30 \mathrm{~V}$ DC or $20,4 \ldots 26,4 \mathrm{~V} \mathrm{AC}$. The indicated values are the limits. The protective earth must be connected to terminal P3.

8.6 Connecting the outputs OUT2/4/5 6

Relay outputs, corresponding to the controller output Y2 or the alarms LIM1 / LIM2 (other selections possible in configuration level \rightarrow from page 26).

8.7 Connecting output OUT1 7

Depending on the version, OUT1 is a relay, logic or continuous output corresponding to the controller output Y1 (other selections in configuration level). With logic and continuous outputs, P13 must be connected to the earth terminal. The logic signal is $0 />20 \mathrm{~mA}(\operatorname{load} \leq 600 \Omega)$ or $0 />12 \mathrm{~V}$ (load $\geq 600 \Omega$).

8.8 Digital inputs and outputs (di / do) 489(101(1314)

The inputs operate as current sink (IEC 1131 type1), logic „ 0 " $=-3 \ldots 5 \mathrm{~V}, \operatorname{logic} " 1 "=15 \ldots 30 \mathrm{~V}$. The outputs operate as „grounded load". They are short circuit protected and contain recovery diodes. The digital input and supply voltage (24 V) must be connected on each circuit board.
(4) di1 / di2 control various actions (set in configuration level $5.19 \mathrm{I} / \mathrm{L} .19 \mathrm{f}$ and parameter Blcki/Blck2)
(9) di3 is used for changeover Local mode $(0) \leftrightarrow$ Remote mode(1).
(10) di4...di7 and do1...do4 are correlated to the programmer as follows:
di4 Program STOP $(0) \leftrightarrow$ RUN (1) do1 Status fo control output 1
di5 Program normal (0) \leftrightarrow RESET (1) do2 Status fo control output 2
di6 Program number (LSB) do3 Status fo control output 3
di7 Program number (MSB) do4 Status fo control output 4

di6	0	1	$0 / 1$
di7	0	0	1
program	1	2	3

di8	0	1	0	1
di9	0	0	1	1
parameterset	0	1	2	3

(12) $\mathbf{d i 8} / \mathrm{di9}$ is used for selecting the parameter set (bei C.700 $=x \mathrm{x} . \mathrm{x} .3, \mathrm{di} 9=\mathrm{MSB}$).

Electrical connections

(13) di10 is the input for override control OVC+ (three-point stepping).
di11 is the input for override control OVC- (three-point stepping) or the correction of the

di12 switches the bumpless transfer of the internal set-point (tracking) OFF (0) \leftrightarrow ON (1) or

do5 or do6 indicates the status automatic \leftrightarrow manual or internal \leftrightarrow external set-point or the status of the controller outputs Y1 / Y2 with switching controllers (configurations $5.595 / 5.597$).

8 The digital inputs and outputs must be supplied from one or several external 24 V dc sources (current consumption $5 \mathrm{~mA} /$ input, max. load $=0,1 \mathrm{~A}$ /output). Examples:

Digital inputs (connect. A) Digital inputs and outputs with one dc source (e.g. connector B)

Digital inputs and outputs with two dc sources (e.g. connector B)

8.9 Connecting the bus interface (11

TTL level or RS422, RS485, PROFIBUS or INTERBUS. With TTL level, an interface module for conversion to RS422/RS485 is required. 4 units may be connected to an interface module.

8.10 Connecting the inputs INP3 / INP4 (15)

Selectable in configuration level as e.g. process variable x 2 , process variable x 3 , auxiliary variable z , ext. set-point or over ride control (OVC). The reference potential of the inputs is at C10.

8.11 Connecting the output OUT3 16

Depending on the version, OUT3 is a logic or continuous output (5.55:). The logis signal is $0 />20 \mathrm{~mA}(\operatorname{load} \leq 600 \Omega)$ or $0 />12 \mathrm{~V}(\operatorname{load} \geq 600 \Omega)$. The signals are available, see page 28. The function can be selected with configuration code 5.55 B . By means of code 5.555 , the output can be connected to a post processing (e.g. linearisation).

Electrical connections

8.12 Versions with integrated supply voltage

The supply voltage can be used only for energization of a 2-wire transmitter or for energization of max. 4 control inputs. The supply voltage is potential-free and can also be used for energizing inputs INP3 ... INP6 or for other units. Selection of supply voltage or digital inputs is by S.I.L. switches (see figure opposite).

4
The supply voltage is only applied to terminals A12 and A14 with INP1 configured for
 (factory setting)! With the S.I.L. switches set to digital input, the voltage is applied to terminals A1 and A4 independent of the configuration of input INP1. In this case, the voltage input of INP5 is not available.

Supply voltage for energization of digital input (e.g. di1...di4)

External use of the supply voltage

Connection of a 2-wire transmitter on example of INP1 or INP5

9．Operation（survey）

国

The user manual（order no． 949904044811 ）is required for the complete operation．

9．1 The menues $1 . . .3$

Apart from the parameter and configuration words，the following dialogue words are used（Text1）：

Text1		Signification
CEbs	CFrnt．	PC communication via interface at terminals B12．．．B16 or connection on the unit front
Cle．ar		
Clowk		Adjust the clock
Corif		Transition to configuration level
Eroc		Return to the previous selection menu
Exit．		Return to operating level（main display）
Hold		The displayed parameter is determined as standard indication．
Mar ${ }^{\text {M }}$		The displayed parameter is stored as additional display at operating level（ \rightarrow Cl le．ar＊）
More		The configuration level area described with MORE is accesible
OSt．ar＊	05tor	Self－tuning will be started or stopped
F＇ar：		Transition to parameter level
FR＇H1）	F＇Stor	Programmer will be started or stopped
F＇Sご．	FRes	Programmer will be set to a specified program point or reset to the reset point
Duit．		Return to operating level（main display）without storage of the values changed last

9．2 The operating level

The operating level comprises main display（1）and extension（2）．During the main display，automatic or manual operation can be selected（ ${ }^{0}$ ）．With automatic，the set－point，and with manual，the correcting value can be adjusted directly $(\Delta \boldsymbol{\nabla})$ ．In the extension，the number and sequence of displays is dependent of selected functions．Max． 12 parameters from the parameter level can be
 can be displayed continuously with the Hol l function．（Press $\square<3 \mathrm{~s} \rightarrow$ Select parameter（press $\Delta \boldsymbol{\nabla}) \rightarrow \square>3 \mathrm{~s} \rightarrow$ Select Hold（Press $\Delta \boldsymbol{\nabla}) \rightarrow \square$ ）．The extension can be left with Exit．and \square or after a timeout of 60 s or with 웡．With 圆，the other operating mode is also selected．
If the set－point is set to＇一－＇by means of $\boldsymbol{\nabla}$ ，the controller is switched off！！

Menu 1 is always selectable at operating level：deletion of additional display（ C lear－），
 （

Status display:			the extended operation of KS94, 'Text2' indicates the controller status. The following table shows the possible displays:		
Set-point Symbol)	Meaning	Status	Meaning	Status	Meaning
	Internal set-point	- : -		- -	KS94 in local mode (Front operation possible)
- . .			No bandalarm and no programmer active		
We	External set-point	E.arid	Band width control has stopped programmer or set-point ramp.	Rem	KS94 in remote mode (Front operation blocked)
WF	Program set-point		End of program is reached		
\% \%	Segment number	Tr"	Set-point gradient is limiting the speed of change		
-120	Program number2nd set-point	$\begin{aligned} & \text { RE日t } \\ & \text { RUMI } \\ & \text { Stor } \end{aligned}$	Programmer in reset mode		
12			Programmer is running		
			Programmer has been stopped		

9.3 Operating the programmer:

The programmer can be operated (run, stop, reset, preset) with menu 1, via digital inputs or via the interface (process management system).

$$
\text { Menu } 1 \text { (flashes) }
$$

Operating Level

When entering the preset time (parameter setting: Frode = 1) the time can be entered up to 99.59 in hours . minutes, or only in hours with longer times.

9.4 Calibration:

[-9 Calibation is only possible with the controller set to manual mode. Calibration from INP1/6 ($\mathrm{T}^{\prime} \mathrm{BF}=$ 40; Potentiometric transducer) is in two steps.

- Select x ब $\mathrm{C} \rightarrow$ Press $\square(\square$ blinking $) \rightarrow$ set transducer to 0%, wait 6 s and confirm with \square.
- Select $\times 1 \mathrm{~d} \mathrm{E} \rightarrow$ Press \square (O blinking) \rightarrow set transducer to 100%, wait 6 s and confirm with \square. Manual calibration of INP6 is only possible with the DAC function switched off. With the DAC function switched on, automatic calibration is possible (\rightarrow DAC page 11).
- For selecting YFEl , press \rightarrow ($\mathbb{\square}$ blinks) change to 1 with Δ and acknowledge with \square \rightarrow automatic calibration is started.

9.5 DAC - motor actuator monitoring (Digital Actor Control DAC®)

With all controllers with position feedback Yp, the motor actuator can be monitored for functional troubles.

CFunc: $=08=3$-point stepping controller with position feedback as a potentiometer
CFLALC $=09=$ continuous with position feedback as a potentiometer
EFLITE = 12 = continuous with current feedback via Yp (INP6)
The system detects the following stepping controller errors:

- defective motor
- defective capacitor (wrong rotating direction),
- wrong phase followers
- defective force transmission at spindle or drive,
- excessive backlash due to wear
- jamming of the control valve e.g. due to foreign body

With the continuous controllers, monitoring if output signal and position feedback exceed a difference of 10% after elapse of a 20 s filter time is provided. The $\mathrm{DAC®}$ function can be switched on or off at parameter setting level $(\mathrm{DAC}=0 / 1)$. A detected trouble is indicated, the controller switches to manual mode and no pulses are output any more.

During Yp calibration, the DAC® function is activated! Otherwise, disabling would be detected when reaching the limits and the controller would be switched to "off" (r calibration).

9.6 Self-tuning (automatic optimization of control parameters)

After starting by the operator, the controller makes an attempt for optimization by determining the parameters for fast line-out at the set-point without overshoot from the process characteristics.
Optimization start:the operator can start the optimization attempt at any time (see opposite drawing).

Preparation for self-tuning:

- PID, PI, PD or P control behaviour can be selected by the user by switching off $\mathrm{Tn}=0$ or $\mathrm{Tv}=0$ before self-tuning start.
- Determine which parameter set shall be optimized (POpt).

Self-tuning cancelation:

The operator can cancel the optimization attempt at any time. This is possible by pressing key 目 $(\rightarrow$ controller switches to 'manual') or via ©tore in menu1 (\rightarrow controller switches to 'automatic'). The controller continues operating with the old parameter values.

Optimization problems:

With process conditions which prevent successful optimization, the controller cancels the attempt for optimization (Hide F is displayed). The controller outputs are switched off to prevent the set-point from being exceeded. Afer self-tuning cancelation, controlling is continued with the old parameter values.

- Determine the output step change ($\mathrm{dYOFO}_{\mathrm{H}}^{\mathrm{t}}$).
- Determine the stable correcting variable ($\mathrm{H} \boldsymbol{\mathrm { IF }} \mathrm{F} \mathrm{m}$).
- Determine the 'process-at-rest' mode (5.700 ; DOOTOd)
- Is the set-point reserve (x-w) > 10% of W100-W0?

9.7 Parameter and configuration level

Menи 1 is always selectable at operating level: several operations $(\rightarrow 7.2)$ and transition to parameter level ($\mathrm{F}:$ ••・ヨ).

Мепи 2 is always selectable at parameter level: selection of additional displays ($\mathbf{(l | l |} \cdot r^{*} \cdot \mathrm{k}$), return to parameter level (Erid), return to operating level (Exit.), transition to configuration level (Cionf).

 with storage of the changes (Exit.).

Value adjustment is as follows (parameter values / configuration codes):

Example for a single value

Example for combined data (e.g. C-codes)

10. Configuration

10.1 General

The KS94 controller configuration for quick and easy function selection during subsequent operation is described in this section. During configuration, the required functions are selected from a large variety of available functions. The configuration determines the basic structure for solution of an application.

The configuration structure is designed so that determination of the required functions for a large number of applications is possible by adjustment of as few configuration words as possible. Moreover, the structure was designed flexible enough to permit additional configurations also for realization of special applications.

10.2 Basic structure

The first menu level permits selection of the main configuration group.
The user can be guided through all function configurations, or he can configure the specific functions required for his application directly.

For all 'complex' main groups, a two-level configuration concept which enables the user to select the 'correct' setting for his application by defining only one configuration word was determined. If necessary, special functions can be determined separately. For the 'normal user', however, the configuration words are preset to purposeful default values! For simplification, the hierarchic configuration dialogue is structured so that the user can and must adjust only the 'required' configuration words.

The user configuration dialogue is started via selector key \square and 'increment' / 'decrement' keys $\Delta \boldsymbol{\nabla}$, like with the other KS92/94 operating levels:

- Press the selector key to select menu items / input values / input positions within a 'level' and to change over to the next higher level at the end of a 'level'.

- Press the 'increment' / 'decrement' keys for returning to a lower level and for modification of input values.
The configuration structure is shown on the two following pages (16 and 17). All possible configuration words are listed. Configuration words which are irrelevant for a function are not displayed during the dialogue!
Switch-over to a selection menu is possible from anywhere during configuration by pressing key $\square>3 \mathrm{~s}$.
Erio: Return to configuration level
More: Activating the More function
Duit: Return to operating level (configuration changes are not effective)
Exit: Return to operating level (configuration changes are effective and the controller
 is re-initialized).

Fig.1: Configuration-Overview

Fig.2: Configuration-Overview

10.3 Main groups

The following main configuration groups are available for KS9x controller configuration:

Eontr	Controller function	C. 1808	...	5.139	19
Sourc	Input allocation	C. 180	...	[.192	\rightarrow page 21
Iriput.	Input function	C.280	...	5.487	\rightarrow page 23
Dut.Ft.	Output function	5.508	...	5.597	\rightarrow page 27
Al ar^{-m}	Alarm function	$5.500]$...	[550	\rightarrow page 31
T-17e	Self-tuning	c.708			\rightarrow page 32
DisF.	User interface	[800			\rightarrow page 32
Hedx	Additional function	5.908	\ldots	5.994	\rightarrow page 33

The main configuration groups are structured in a hierarchical order, whereby determination of a dialogue for prompting only the really relevant configurations is possible.

(i) ENGINEERING TOOL 'ET/KS 94’

Engineering Tool ET/KS94 permits realization of all operations which are possible via the KS94 front panel on a PC, whereby controller configuration and parameter setting are facilitated considerably.

The engineering tool offers the following functions:
Creation and modification of the parameter set
Transmission of a parameter set to KS94

- Read-out of a parameter set from a KS94
\square Long-term storage of various parameter sets on hard disk or floppy

Connection of PC and KS94 controller is via an RS232/TTL adaptor cable, which must be ordered separately (ordering information \rightarrow see page 43 section 12). In conjunction with the 'SIM/KS 94' controller simulation, a graphic trend display of the real process data is available!

Configuration

10.4 CONTR: Controller

This main group determines the controller structure and function, which is used as starting point for controller configuration for a particular application. The main controller configuration Li. leads to
 checked before commissioning and corrected, if necessary. After determination of this word, no further settings are required for a large number of applications. Additional function adaptions are possible via configuration words 5.105 and the following configurations.

CFunc (Control behaviour)	ㄷT-팝 (Controller type)	WFunc (Set-point function)
00: signaller 1 output 01: signaller 2 outputs 02: 2-pnt.controller 03: 3-pnt.controller (heating switching and cooling switching) 04: 3-pnt.controller (heating continuous and cooling switching) 05: 3-pnt.controller (heating switching and cooling continuous) 06: Δ / Y-off 07: 3-pnt.stepping 08: 3-pnt.stepping with Yp (INP6) 09: continuous with position controler 10: continuous 11: continuous split-range (only with Optin C; OUT1 and OUT3) 12: continuous with current feedback via Yp (INP6)	0 : standard controller 1: ratio controller $(\rightarrow$ E. 1주 $)$ 2: 3-element controller $\mathrm{x}=\mathrm{x} 1+\mathrm{a} \cdot(\mathrm{x} 2-\mathrm{x} 3)$ 3: mean value $x_{s}=(1-b) \cdot x 1+b \cdot x 2$	0 : set-point 1: set-point / cascade 2: programmer 3: set-point with ext. offset 4: set-point / cascade with internal offset 5: set-point / cascade with external offset 6: programmer with internal offset 7: programmer with external offset

Main controller configuration 2:

Cilode (Output action)	$\left.\right\|_{\text {(Differentiation) }} ^{\text {CDiff }}$	CFail (Controller behaviour with main variable sensor break)
0: inverse	0: differentiate Xw	0 : neutral (controller outputs switched off) 1: $\quad \mathrm{Ypid}=Y \min (0)$ 2: $\quad Y$ pid $=Y \max (100)$ 3: $\quad \mathrm{Y}$ pid $=\mathrm{Y} 2$ (adjustment via front panel not possible) 4: $\quad \mathrm{Ypid}=\mathrm{Y} 2 \quad$ (adjustment via front panel possible)
1: direct	1: differentiate X	

Configuration

Span start X0: (only with ratio controller)
Xmin:(min. process value limiting Xmin)
Numeric value: -999 ... 9999
Span end X100: (only with ratio controller)
Xmax:(max. process value limiting Xmax)
Numeric value: -999 ... 9999 and Xmin Xmax

Factor for stoichiometric ratio s: (only with ratio controller)
S :stoichiometric ratio Numeric value: 00.00 ... 99.99 (2 fixed digits behind decimal point)

Programmer configuration:

(only with programmer configured)
Prog
ama. 1
Programmeder

10.5 SOURCE: Input signal allocation

Input signal allocation is dependent of main controller configuration 'L. AR日' this proposal must always be checked before commissioning and corrected, if necessary. Therefore, input signal allocation 'SOURCE' is no independent main item and considered as additional configuration of 'CONTR'.

F. 18 m (1) Allocation of digital signals for set-point processing:			
Sbi (Set-point switch-over from internal to external) ${ }^{1}$	STrac (Bumpless switch-over to int. set-point with int./ext. switch-over)	Sobon (Effective set-point offset)	$5 w / 2$ (Switch-over to set-point w2)
0 : only internal set-point 1: W/Wext via front 2: dil=external set-point 3: di2=external set-point 4: dil = internal set-point 5: di2 $=$ internal set-point	0: no tracking ${ }^{2}$ 1: tracking on 2: di2 = tracking on 3: di12 = tracking on 4: di2 = tracking off 5: di12 = tracking off	0: no offset $^{2)}$ 1: offset on 2: di1 $=$ offset on 3: di2 $=$ offset on 4: di11 $=$ offset on 5: di1 $=$ offset off 6: di2 $=$ offset off 7: di11 $=$ offset off	

Allocation of digital signals for the controller functions:

$5 \overline{\mathrm{H}} / \mathrm{M}$ (Automatic / manual (manual switch-over)	SPI/F (3.pnt.stepping controller: feedback off, otherwise PI / P switch-over)	sy2on (Output of safe correcting value)	scoff (Switch-off controller)
```0 : auto/manual via front fixed to manual dil \(=\) manual di2 \(=\) manual Backup run dil \(=\) auto di2 \(=\) auto```	0: PI fixed ${ }^{2}$   1: fixed to ${ }^{\text {P action }}$   2: di1 $=$ P action   3: di2 $=$ P action   4: di1 $=$ PI action   5: di2 $=$ PI action	0: Y no Y2 $)^{2}$   1: fixed to Y2   2: di1 $=Y 2$   3: di2 $=Y 2$   4: timer = Y2   5: dil = Y   6: di2 = Y	```0: controller on/off via front ( \(\mathrm{W}=\) '_——') controller fixed to off dil \(=\) controller off di2 \(=\) controller off timer= controller off dil \(=\) controller on di2 \(=\) controller on```



[^0]
### 10.6 INPUT: inputs

The signal inputs for the previously selected controller configuration are determined in this main group. The signal inputs required for the selected controller function are displayed in the menu for configuration. As during control function configuration, a large number of applications can also be covered by determining the main configuration. At the second level, special cases can be matched and adjusted by additional, optional configuration.Max. 5 signal inputs are provided on KS94. Analog inputs INP1, INP5 and INP6 are always provided; INP3 and INP4 are optional inputs.
All analog inputs (whether or not used for control) can be used for monitoring purposes (e.g. alarm processing).

### 10.6.1 Signal input 1 / INP1 (main variable $x 1$ )

Configuration is for main variable x 1 . This signal input is a universal input for which extensive functions can be configured.

	Main configuration:   The main configuration word is used for determination of input sensor type and physical unit. Additional input configurations can be determined using the additional configuration.		
	T'ョF:   (Sensor type)	$\begin{aligned} & \text { Urit. } \\ & \text { (Unit)* } \end{aligned}$	$\cdots \begin{gathered}\text { DF } \\ \text { (Number of decimals) }\end{gathered}$
Thermocouple:   00: Type L $0 \ldots 90{ }^{\circ} \mathrm{C}$   01: Type J $0 \ldots 90{ }^{\circ} \mathrm{C}$   02: Type K $0 \ldots 1350^{\circ} \mathrm{C}$   03: Type $\mathrm{N} 0 \ldots 1300^{\circ} \mathrm{C}$   04: Type S $0 \ldots 1760^{\circ} \mathrm{C}$   05: Type R $0 \ldots 1760^{\circ} \mathrm{C}$   06: Type T $0 \ldots 400^{\circ} \mathrm{C}$   07: Type W $0 \ldots 2300^{\circ} \mathrm{C}$   08: Type E $0 \ldots 90{ }^{\circ} \mathrm{C}$   09: Type B (0) ... 400   ... $1820^{\circ} \mathrm{C}$	Resistance thermometer:   20: Pt $100-99.9 \ldots 850.0^{\circ} \mathrm{C}$   21: Pt $100-99.9 \ldots 250.0^{\circ} \mathrm{C}$   25: $2 \times \operatorname{Pt} 100-99.9 \ldots 850.0$   ${ }^{\circ} \mathrm{C}$   26: $2 \times$ Pt $100-99.9 \ldots 250.0$ ${ }^{\circ} \mathrm{C}$   Standard signals:   30: $0 . . .20 \mathrm{~mA}$   31: $4 \ldots 20 \mathrm{~mA}$   32: $0 \ldots 10 \mathrm{~V}$   33: $2 \ldots 10 \mathrm{~V}$   Potentiometric transducer:   40: 0 ... 500 Ohm	$\begin{array}{ll} 0: & \text { at } T \cdot \Xi F \\ 30 \ldots . .40 \\ 1: & { }^{\circ} \mathrm{C} \\ 2: & { }^{\circ} \mathrm{F} \end{array}$	0: no decimal point   1: 1 digit behind the decimal point   2: 2 digits behind the decimal point   3: 3 digits behind decimal point   only with type: 20 ... 40


$\mathbf{x 0}$ :
(physical value at 0\%)
numeric value -999 ... 9999
select only with type $=30$... 40
x 100 :
(physical value at $100 \%$ )
numeric value -999 ... $9999, \mathrm{X} 0 \neq \mathrm{X} 100$ !
select only with type $=30$... 40
[.205
Hep I: I:.D
Zusatzkonfig.

Additional configuration:
Via the additional configuration, the default setting for the signal input can be changed or matched dependent of sensor type class.

Fail   (Signal behaviour with sensor fault)	STk   (Temperature compensation)	KKorr   (Process value correction enable)
$\begin{array}{ll} \hline \text { 1: } & \text { upscale(X100) } \\ \text { 2: } & \text { downscale(X0) } \\ \text { 3: } & \text { XFail (ㄷ.2 } \end{array}$	0 : not effective   internal TC   external TC   (TC fixed in $[.2$ 渵!	0 : not effective   1: with process value correction (adjustable via parameters $\times 1$ in, $\times 1$ Out.,$~<2$ in, $\times 2$ out. $)$
Type: 00...26, 31, 40	type: 00 ... 09	
Non-selectable digits are marked by 0 '		



## Tkref:

(external TC)
numeric value:- $-99 \ldots 100^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$
select only with type: $00 \ldots 08$ and $\mathrm{STk}=2$


XFail:
(substitute value with sensor error)
numeric value: -999 ... 9999


## Tfm:

(filter time constant for input value processing)
numeric value: 0.0 ... 999.9

## Optional configuration 1:

The optional configuration can be used to determine the functions for two signal pre-processing levels.


Furne 1 : Funce
(decimal point for gain, Xeff and yki)
0: no decimal point
1: 1 digit behind the decimal point
2: 2 digits behind the decimal point
3: 3 digits behind decimal point

## Linearization parameters：



The configuration parameters for linearization are stored as follows．

E．23	$x=1$	R．23］： 5 E1	value pair 1		
E．234	$x=2$	［．235－ 2 2	value pair 2	1	Note that the input values （x－values）must be entered in ascending order．$(\mathrm{xs} 1<\mathrm{xs} 2<\mathrm{xs} 3 \ldots)$
E．235	x	［2］	value pair 3		
E．238	$\mathrm{x}=4$	［2］ 2 E 2	value pair 4		
E．230	$x=5$		value pair 5		
［．232	$x \leq 6$	［23］ 3 ¢ 6	value pair 6		
E． 234	$x=7$	［235	value pair 7		
E．235	$\mathrm{x}=8$	［．237－ 238	value pair 8		

The range for these configuration words is within－999 and 9999 or＇－＿＇（switched off）！
（i）For limiting the number of parameters，these functions can be used only once during pre－processing levels 1 or 2 ！Linearization segment points which are not required can be switched off by setting＇——＇．

## 10．6．2 Signal input 3 ／INP3（ratio variable $\mathbf{x} 2$ or auxiliary variable $z$ ）

In this case，the signal is configured for ratio variable x 2 or auxiliary variable z ，provided that option p．c．b． C is fitted in the controller and the function was selected during controller configuration．

2．3n7 inpz 30．R． 1 Hauftkonfig．	Main configuration：   Selection is only possible with option p．c．b．C provided．
T・リーシ （Sensor type）	DF   （Number of digits behind the decimal point）
Standard signals：   30： $0 \ldots 20 \mathrm{~mA}$   31： $4 \ldots 20 \mathrm{~mA}$	0：no decimal point   1： 1 digit behind the decimal point   2： 2 digits behind the decimal point   3： 3 digits behind decimal point



## Additional configuration：

The additional configuration can be used for changing or matching the signal input default setting for the sensor type．
Select only with type $=31$ option p．c．b． C and ratio or auxiliary variable selected．
Fail
（Signal behaviour with sensor error）
1：upscale（X100）
2：downscale（X0）
3：XFail（2．3：3）

## Configuration

The other configuration words for INP3 are explained in section (see following table).


$\begin{aligned} & {[.271} \\ & 5.272 \\ & 2.213 \\ & E .214 \\ & 2.238 \end{aligned}$

without linearization (Func 1/2: 2)

### 10.6.3 Signal input 4 / INP4 (variable x3, ext. set-point Wext, override control ovc+/-)

The signal for three-element variable x 3 or the galvanically isolated external set-point Wext or the override control signal ovc+/- are configured with option p.c.b. C fitted in the controller and the function selected during controller configuration.
The configuration words for INP4 are explained in section and (see following table).

Main configuration $\times 35 \pi$	see 2.387
X100[.352	E.242
Additional configuration 5.355	[.385
XFail 2.353	[.2 13
TfmE.354	[.2 14
Optional configuration 15.37\%	[.32]
Optional configuration 2E.37	
	" c , cz
Linearization table 0.387	[.337

### 10.6.4 Signal input 5 / INP5 (ratio variable x2, ext. set-point Wext)

The signal for ratio variable x 2 or external set-point Wext is configured with option p.c.b. not fitted in the controller and the function selected during controller configuration. The configuration words for INP5 are explained in section and (see following table).

Main configuration	5.474	see	2.3世4	additional 0/2...10V (type: 32/33)
X0	E.48	"	2.20:	
X100	E.402	"	2.202	
Additional configuration	E.405	"	2.385	
XFail	[.413	"	[.2 31	
Tfm	E.414	"	E.2 14	
Optional configuration 1	2.42]	,	E.23]	without linearization (Func1/2: 2)

### 10.6.5 Signal input 6 / INP6 (auxiliary variable Yp, feedback Yp)

The signal for the auxiliary variable Yp or for the position feedbackk is configured, if this was selected during controller configuration.
The configuration words for INP6 are explained in section and (see following table).

Main configuration	2.45
X0	5.45 !
X100	E.452
Additional configuration	E.455
XFail	2.453
Tfm	2.454
Optional configuration 1	2.478

see

"
" 385
" 1.213
2.23
additional potentiometric transducer for Yp (type: 40)

## 10．7 OUTPT：outputs

## 10．7．1 Signal output 1 ／OUT1



Sro   （Signal source）	T・リF•E   （Output stage）	Mode   （Motor actuator output action）
00：output switched of   controller output $\mathrm{Y} 1 /$ Yout1   controller output Y2／Yout2   output Ypid   position feedback $Y p$   controlling deviation Xw   process value Xeff   X1   X2   3：X3   set－point W   external set－point Wext   external offset dWe   set－point Weff   programmer set－point Wprg   alarm 1 （limit1）   alarm 2 （limit2）   alarm 3 （limit3）   alarm 1 （limit4）	$\begin{array}{ll} \text { 0: } & \text { relay (switching) } \\ \text { 1: } & 0 \ldots 20 \mathrm{~mA} \text { (continuous output) } \\ \text { 2: } & 4 \ldots 20 \mathrm{~mA} \text { (continuous output) } \\ \text { 3: } & 0 / 20 \mathrm{~mA} \text { (logic) } \end{array}$	$\begin{array}{ll} 0: & \text { not selectable } \\ \text { 1: } & \text { direct / normally open } \\ \text { 2: } & \text { inverse / normally closed } \end{array}$

## Additional configuration Out1：



Via the options configuration，the functionality for a signal post－processing stage can be determined．
This configuration word is displayed only with the option enabled．

Func   （Function selection for signal output processing）	DF   （decimal point for $\mathrm{xsi}, \mathrm{x} 0, \mathrm{x} 100$ ）
0：no function，signal is output without change（ $0 \% \ldots .100 \%$ ）	0：no decimal point   1： 1 digit behind decimal point
1：scaling（reference values C． 510 and C． 511 are effective）	2： 2 digits behind decimal point   3： 3 digits behind decimal point

X0：
（physical value at $0 \%$ ）
Numeric value－999 ．．． 9999
［．5：
8189 1明
Eezusswert 106\％：
x100：
（physical value at 0\％）
Numeric value－999 ．．． 9999

## Configuration

### 10.7.2 Signal output 2 / OUT2

Used for configuring the source of output OUT2. This signal output is a universal output and can be configured for extensive functions.
(Signal source)

### 10.7.3 Signal output 3 / OUT3

Used for configuring the source of output OUT3. This signal output is a universal output and can be configured for extensive functions.   Main configuration:   Selection is only possible with option C fitted.		
Sro   (Signal source)	T・ョF••   (Output stage)	Mode   $\downarrow$ (Motor actuator output action)
00: $n o n e ~(o u t p u t ~ s w i t c h e d ~ o f f) ~$ 12: process value x2   01: controller output Y1/Yout1 13: process value x3   02: controller output Y2/Yout2 20: set-point Wint   03: controller output Ypid 21: ext. set-point Wext   04: position feedback Yp 22: ext. Offset dWe   05: control deviation xw 23: set-point Weff   10: process value xeff 24: programmer Wprg   11: process value x1	0: switched off   1: $0 \ldots 20 \mathrm{~mA}$    (continuous   2: output)   2... 20 mA     (continuous   3: output)   3: $0 / 20 \mathrm{~mA}$ (logic)	0: not selectable   1: direct / normally open   2: inverse / normally closed

## Additional configuration:

The optional configuration can be used for determining the functions for signal post-processing.This

Fthtic.   (Function selection for signal output processing)	DF   (decimal point for $\mathrm{xsi}, \mathrm{x} 0, \mathrm{x} 100$ )
0 : no function, signal is output directly ( $0 \% \ldots 100 \%$ )   1: scaling (reference values 5.578 and 5.571 are effective)   2: linearization (segment points xs 1,ys1 ...)	0: no decimal point   1: 1 digit behind the decimal point   2: 2 digits behind the decimal point   3: 3 digits behind decimal point

x0:
(physical value at $0 \%$ )
numeric value -999 ... 9999

## x100:

(physical value at $100 \%$ ) numeric value -999 ... 9999


Note that the input values (x-values) must be entered in ascending order. (xs1<xs2<xs3...)


The configuration parameters for linearization are stored as follows.

E. 512	$x=1$	5.573	ㅂE1	value pair 1
5.574	$x=2$	5.575	$\pm E 2$	value pair 2
5.576	$x \leq 3$	5.577	' $=3$	value pair 3
5.578	$\mathrm{x}=4$	5.579	-	value pair 4
[.580	$x=5$	[.58	- EES	value pair 5
[.582	$x \leq 6$	[.583	-	value pair 6
5.584	$x=7$	5.585	-	value pair 7
[.585	$\mathrm{x}=8$	[.587	- $=8$	value pair 8

The range for these configuration words is within -999 and 9999 or $\qquad$ (switched off)!

### 10.7.4 Signal output 4 / OUT4

	Used for configuring the source of output OUT4. This signal output can be configured for extensive functions.   Main configuration:		
Sro   (Signal source)	$\\|$T'ヨF•E   (Output stage)	Mode   (Actuator output action)	
00: output switched off   01: controller output Y1/Yout1   02: controller output Y2/Yout2   25: alarm 1 (limit1)   26: alarm 2 (limit2)   27: alarm 3 (limit3)   28: alarm 4 (limit4)   29: programmer output 1   30: programmer output 2   31: programmer output 3   32: programmer output 4   33: program end	$0:$ relay (switching)	0: not selectable   1: direct / normally open   2: inverse / normally closed	

## Configuration

### 10.7.5 Signal output 5 / OUT5

Used for configuring the source of output OUT1.. This signal output can be configured for extensive functions.

# 5.581 25.R. 1 <br> Heuftkonfis. 

## Main configuration:



### 10.7.6 DO5,6 (digital control outputs)

Additional digital control outputs are configured!

## Main configuration:



Main configuration:


### 10.8 ALARM: alarms

### 10.8.1 Alarm 1 / (limit 1)

The function for alarm 1, (output via output OUT 4) is configured.

glem1 日R.M.			DF   (Decimals for alarm limits)
	Sro   m signal source)	F (Alarm function)	
00: no source   01: Xeff   02: $\mathrm{Xw}^{*}$   03: x1   04: x2   05: x3   06: auxiliary variable z   07: Wext   08: $\Delta \mathrm{w}$   09: Weff   10: Yp	11: Ypid   12: OVC   13: WMIN/MAX (Wsel)   14: INP1   16: INP3   17: INP4   18: INP5   19: INP6   20: program time (net)   21: program time (gross)   22: program rest time   23: Status PROFIBUS-DP   24: faulty actor	```0: no alarm (don't care) sensor fail sensor fail or measurement value alarm sensor fail or measurement value alarm with suppression with set-point switch-over or start-up 4: measurement value alarm 5: measurement value alarm with suppression with set-point change or start-up 6: Bus error (PROFIBUS-DP)```	0: no decimal point   1: 1 digit behind the decimal point   2: 2 digits behind the decimal point   3: 3 digits behind the decimal point

*Limit comparator (refered to set-point), all other versions are fitted with limit contact.

### 10.8.2 Alarm 2 (limit 2)

The function for alarm 2 (output via OUT 5) is configured.


### 10.8.3 Alarm 3 (limit 3)

The function for alarm 3 (output via OUT 1) is configured.
Main configuration [54 see W.5AB
Selection is possible with OUT1 configured as alarm output.

### 10.8.4 Alarm 4 (limit 4)

The function for alarm 4 (output via OUT 2) is configured.

$$
\text { Main configuration } 56 \pi \text { see } 5.5 \square \pi
$$

Selection is possible only with OUT2 configured as alarm output

## 10．9 TUNE：self－tuning



The type of controller self－tuning and the type of controlled self－tuning can be adjusted！
Main configuration：

  （Controller   －self－tuning	$\downarrow$（Process－at－rest mode）	OChtre   （Controlled self－tuning mode）	ODP   （Decimals for ［ilint．e）
0：Standard	0 ： $\operatorname{grad}=0$   1： $\operatorname{grad}<0$   with inverse controller or grad $>0$ with direct controller   2． $\operatorname{grad} \neq 0$	0：no function   selectable control／disturbance behaviour   switch－over via operation   switch－over via control input   switch－over controlled by Weff   switch－over controlled by Xeff   switch－over controlled by Ypid   switch－over controlled by X－W	0：no decimal point   1： 1 digit behind the decimal point   2： 2 digits behind the decimal point   3： 3 digits behind the decimal point

10．10 DISP：User interface for operation

FII Configuration of display function signification via front panel L1 process operation：			
Text． 2   （Signification of display text2）	Us．Tx （User text selection）	LED   （Front LED function）	L．ョィヨル （Language selection of text displays）
0：Y（correcting variable display） bargraph（ $-100 \% \ldots$ ．．．） $0 \%$ ．．．$+100 \%$   1：Xw（control deviation）bargraph $-10 \% \ldots 0 \% \ldots+10 \%$ span   2：Tprog bargraph（elapsed program time） 0 ．．．tmax   3：Status display	0：no user text   1：user text via control input   2：user text via function statuses	0：logic output levels   Y1，Y2，LIM1，LIM2   logic output levels LIM   2：programmer control o   3：logic output levels LIM   4：PROFIBUS－DP error   5：logic output levels Y2，   6：logic output levels LIM	0： German   1： English   2： French       1．．．LIM4    itputs D1 ．．．D4    1，Y1，Y2，LIM2    Y1，LIM1，LIM2


LUriit．   （Unit selection for text 1）	XDisF   （select process value for disp．）	wDisF   （select set－point for disp．）
  00：no unit $06: \mathrm{t} / \mathrm{h}$    $01:$ ${ }^{\circ} \mathrm{C}$ $07: \mathrm{m} 3 / \mathrm{h}$   $02:$ ${ }^{\circ} \mathrm{F}$ $08: 1 / \mathrm{min}$   $03:$ 09 $99:$ freely selectable   $04:$ mbar Engineering toolnecessary    05：bar	0：Process value $=x e f f$   1：$\quad$ Process value $=\mathrm{x} 1$   2：$\quad$ Process value $=\mathrm{x} 2$   3：$\quad$ Process value $=x 3$	$\begin{array}{lc} 0: & \text { set-point disp. }=\text { Standard } \\ 1: & \text { set-point disp. }=\text { Weff } \end{array}$

### 10.11 AUX: Additional functions

The interface function and operating frequency for suppression of interference on inputs are configured.

### 10.11.1 COM (serial interface)

	Mainconfiguration: (IS01745, PROFIBUS) Only with HW option B
Prot.   (Interface protocol	$\downarrow \quad$Ebund   (Baud rate)*
0: IS 0174	00: not adjustable 01: 2400 Bd 02: 4800 Bd 03: 9600 Bd 04: 19200 Bd


*PROFIBUS: automatic baud rate detection

### 10.11.2 Hardware

The hardware-related functions are configured.

F.893	Main configuration Operating frequency
$\underset{\text { Netzfresulenz }}{\substack{\text { Hu } \\ \text { Nom } \\ \hline}}$	
$\sqrt{\text { Fr= }} \text { (Main }$	-
0: 50 Hz   1: 60 Hz	

### 10.11.3 Forcing signal input



### 10.11.4 Forcing digital input

10.11.5


Fil	Foi2	Foli4
0: Controller value	0: Controller value	0: Controller value
1: Forcing	1: Forcing	1: Forcing

## Configuration



Fdi9	Fodid	Foil 11	Fdil2
(Forcing dig. input 9)	(Forcing dig. input 10)	(Forcing dig. input 11)	(Forcing dig. input 12)
0: Controller value	0: Controller value	0: Controller value	0: Controller value
1: Forcing	1: Forcing	1: Forcing	1: Forcing

### 10.11.6 Forcing signal output



FOUIT5
(Forcing signl. outp 1)
0: Controller value
1: Forcing
2: Release signal

### 10.11.7 Forcing digital output



Fdo. $5 / 6$ (Forcing dig. outp 5/6)
0: Controller value
1: Forcing
2: Release signal

### 10.11.8 Hard-/Software Codenumber

The following configuration dates are not changeable. They show the hardware version
( 5.991 u. $5.995^{3}$ ) and the software version ( 5.993 u .5 .994 ) of the instrument.
Example: 940792331201

	F最最 1
$\sum^{0}$	12nc1 9 23



Example: 401215725320


### 10.12 Examples of configuration



## 11. Parameters

### 11.1 General

This section gives a survey of the KS92/94 parameter data and general hints for parameter handling. The parameter operation and effect on the controller operation are described with the operating principle.
The parameter setting dialogue is realized via selector key $\square$ and 'increment' / 'decrement' keys $\Delta \nabla$, like at the other operating levels:

- Press the selector key to select menu items / input values within one level and to change to the next higher level.
- Press the 'increment' / 'decrement' keys to return to a lower level or to change input values.

The controller parameter structure is given on the following page. All parameters are listed. Parameters which are not relevant for a function (configuration-dependent) are not displayed!

A selection menu can be displayed anywhere at parameter level by pressing key $\square>3 \mathrm{~s}$.
End: return to parameter level
Mar*: mark the selected parameter for display at 'extended' configuration level.
Exit: return to operating level.
Corf: transition to configuration level.


### 11.1.1 Allocation of parameters to the 'extended operating level'

Up to 12 parameters can be allocated to the 'extended operating level' (see Fig.3: ), whereby the controller operation is simplified, since changing over to parameter level whenever one of these parameters must be changed is omitted.
Allocation: select required parameter, press 'selection' key $\square$ during >3s (F'ar'.. blinks) Select Mark with 'up' key $\boldsymbol{\Delta}$ and acknowledge with 'selection' key (see Fig.3: ).
Delete: select the required parameter at the extended operating level, press 'selection' key $\square$ during $>3$ s ( P ': $\mathrm{Ir} \cdot \boldsymbol{\mathrm { B }}$ blinks) and acknowledge with 'up' key $\boldsymbol{\Delta}$.
Select [1E.Er' and acknowledge with 'selection' key (see Fig.4: ).
Hold: The Hold function can be used for selecting a parameter from the extended operating level for being visible continuously. For this, select the required parameter at the extended operating level, press 'selection' key $\square$ during >3s (P'ar'a blinks) select Hold with 'up' key $\boldsymbol{\Delta}$ and confirm with

Fig. 3 : selecting a parameter


Fig.4: deleting a parameter
 'selection' key (see Fig.4:).

## Applications:

- During optimization, frequent access to defined parameters ( $\mathrm{Xp} 1, \mathrm{Xp} 2, \mathrm{Tn}$ and Tv ) is required.
- During commissioning, limit value ( LimH1, LimH2, ...) or measurement value corrections must be changed frequently.
- With the parameter level disabled, access to the selected parameters is possible for the operator. Deleting a parameter from the 'extended operating level' must be done at this level (see Fig.4: )



## Parameters

### 11.2 Set-point function

Text 1	Description	Range	Default
Set.pt.	Set-point parameter		
LC:+	Band width upper limit	0... 9999	'——_ (switched off)
LC-	Band width lower limit	0... 9999	'-_ ' (switched off)
WE1	lower set-point limit for Weff	-999 ... 9999	0
W160	upper set-point limit for Weff	-999 ... 9999	100
W2	additional set-point	-999 ... 9999	100
Grw+	set-point gradient plus with W[w/min]	0.01 ... 99.99	-__ ' (switched off)
Firw-	set-point gradient minus with W[w/min]	0.01 ... 99.99	'_-_' (switched off)
F\% ${ }^{\text {cos }}$	set-point gradient with W2[w/min]	0.01 ... 99.99	'_-_ ' (switched off)

### 11.3 Time function

Text 1	Descrintion	Range
Timer*	Timer-parameters	
TS.Y	Start value: Year	0... 255
TS. MD	Start value: Month and day	Month:1...12; Day: 1... 31
TS. HM	Start value: Hour and minutes	Hour:0...23; Minutes: 0... 59
TE.Y	Final value: Year	0... 255
TE. M ${ }^{\text {P }}$	Final value: Month and day	Month:1...12; Day: 1... 31
TE. Hif	Final value: Hour and minutes	Hour:0...23; Minutes: 0... 59

### 11.4 Programmer functions

REEFI Programmer recipe 1

Analog				Digital			
Text 1	Description	Range	Def.	Text 1	Description	Range	Def.
Wrode	Change mode	0: Ramp   1: Step   2: Ramp (Time priority	0		Reset value control output 1..4	0000..1111	0000
				Tol	Time segment 1	0...9999[min]	
				01	control output 1.4 for segm. 1	$0000 . .1111$	0000
Prode	Preset mode	0: Segment start	1	Tode	Time segment 20	$0 . .9999[$ min]	
		1: Program time		D20	control output 1..4 for segm. 20	0000.. 1111	0000
Pruext	Successive program	$1 . .3$ or ' ${ }^{\text {- }}$ '	$\stackrel{\square}{-}$				
LC:	Band width lower limit	0... 9999	$\stackrel{ }{6}$				
LE+	Band width upper limit	0... 9999	6,				
WFV	Reset value W0	-999...9999	0				
TF1	Time segment1	0... 9999 [min]					
WF1	Set-point segment 1	-999... 9999	0				
$\cdots$							
TF29	Time segment 20	0... 9999 [min]					
WF20	Set-point segment 20	-999...9999	0				

## RECFZ see programmer recipe 1

$$
\text { REOFS see programmer recipe } 1
$$

### 11.5 Alarm function

Text 1	Descrintion	Range	Default
LITI	Alarm 1		
LimL1	Low limit	-999 ... 9999	'-_-' (switched off)
LimH1	High limit	-999 ... 9999	'__ ' (switched off)
Lxsod	Switching difference	-999 ... 9999	0
LIT2	Alarm 2		
LimL2	Low limit	-999 ... 9999	'-_-' (switched off)
Limit	High limit	-999 ... 9999	${ }^{-}$-_ ' (switched off)
Lxsed2	Switching difference	-999 ... 9999	0
LITS	Alarm 3		
LimLS	Low limit	-999 ... 9999	'-_ ' (switched off)
Li mHS	High limit	-999 ... 9999	'__- '(switched off)
LxsdS	Switching difference	-999 ... 9999	
LIT4	Alarm 4		
LimL4	Low limit	-999 ... 9999	'___ ' (switched off)
LimH4	High limit	-999 ... 9999	'-_-' (switched off)
LxSd4	Switching difference	-999 ... 9999	0

### 11.6 Self-tuning

Text 1	Descrintion	R/W Range		Def.
T-\|hワ	Optimization			
YOF.m	Correcting variable whilst process at rest	R/W	-105 ... 105	0
dYort	Step width during identification	R/W	5... 100	100
FOTF.	Parameter set to be optimized	R/W	0 ... 3	1
	trigger point 1 (set $1 \leftrightarrow$ set 2)	R/W	-999 ... 9999 (Decimal point as configured in L.7010; ODF)	
Tri $\boldsymbol{T} \boldsymbol{2}$	trigger point $2($ set $2 \leftrightarrow \operatorname{set} 3)$	R/W	-999 ... 9999 (Decimal point as configured in L. 7 IT ; - DDF)	
Tris 3	trigger point 3 (set $3 \leftrightarrow \operatorname{set} 4)$	R/W	-999 ... 9999 (Decimal point as configured in L.701;	
ORes 1	Self-tuning result during heating	R	```0: Cancellation (during optimization preparation) Cancellation (wrong output action) Finished (successful optimization; reversal point found) Cancellation (process does not react or is too slow) Cancellation (reversal point found; estimation unsafe) Cancellation (reversal point not found; estimation unsafe) Finished (optimization cancelled due to exceeded set- point risk; reversal point not reached so far; estimation unsafe) 7: Cancellation (correcting variable too low \(\Delta \mathrm{Y}<5 \%\) ) 8: Cancellation (set-point reserve too low)```	
ORes2	Self-tuning result during cooling	R	$0 \ldots 8$ (see ORes1)	
Tal	Delay time heating	R	000,0 ... 999,9 s	
Umax 1	Vmax heating	R	000,0 ... 999,9 /s	
KF1	Process amplification heating	R	000,0 ... 999,9	
T-12	Delay time cooling	R	000,0 ... 999,9 s	
Wmax	Vmax cooling	R	000,0 ... 999,9/s	
KF2	Process amplification cooling	R	000,0 ... 999,9	

## Parameters

## 11．7 Control algorithm

Text 1	Description	Range	Default
CF＇ar＇s	Controller parameters		
TFuls	Min．pulse length	0.1 ．．． 999.9 s	0.3
TM	Actuator response time	$10 . . .9999 \mathrm{~s}$	30
42	Additional correcting value	－105 ．．． $105 \%$	0
Ymin	Min．correcting variable limiting	－105．．． $105 \%$	0
Ymax	Max．correcting variable limiting	－105．．． $105 \%$	100
YU	Correcting variable working point	－105．．． $105 \%$	0
Piar ${ }^{\text {dr }}$	Actual parameter set	$0 \ldots 3$	
xsd2	Switching difference of additional contact	0.1 ．．． 999.9	1
LW	Trigger point separation of additional contact	－999 ．．． 9999	0
$x \leq d 1$	Switching difference of signaller	0.1 ．．． 999.9	1
$x \ln 2$	Neutral zone（ $\mathrm{Xw}>0$ ）	0.0 ．．． 999.9 \％	0
xsh1	Neutral zone（ $\mathrm{XW}_{\text {w }}<0$ ）	0.0 ．．． 999.9 \％	0
xsh	Neutral zone	0.2 ．．． 999.9 \％	0.2
S®t．	Parameter set 0		
XF1 ${ }^{\text {d }}$	Proportional band 1	0.1 ．．． 999.9 \％	100
XF2 ${ }^{\text {d }}$	Proportional band 2	0.1 ．．． 999.9 \％	100
Tri ${ }^{\text {a }}$	Integral action time	0 ．．． 9999 s	10
Tu1 6	Derivative action time	$0 . . .9999$ s	10
T1 ${ }^{1}$	Duty cycle 1	0.4 ．．． 999.9 s	5
T2	Duty cycle 2	$0.4 \ldots 999.9 \mathrm{~s}$	5
らこも1	Parameter set 1		
$\mathrm{XF}^{\mathrm{XF}} 11$	Proportional band 1	0.1 ．．． 999.9 \％	100
$\mathrm{XF}^{\mathrm{XF}} \mathbf{2} 1$	Proportional band 2	0.1 ．．． 999.9 \％	100
Tril 1	Integral action time	0 ．．． 9999 s	10
Tu1 1	Derivative action time	$0 . . .9999 \mathrm{~s}$	10
T1 1	Duty cycle 1	$0.4 \ldots 999.9 \mathrm{~s}$	
T2 1	Duty cycle 2	$0.4 \ldots 999.9 \mathrm{~s}$	5
Sotz	Parameter set 2		
XF1 2	Proportional band 1	0.1 ．．．999．9 \％	100
XF2 2	Proportional band 2	0.1 ．．． 999.9 \％	100
Th1 2	Integral action time	$0 \ldots . .9999 \mathrm{~s}$	10
Tu1 2	Derivative action time	0 ．．． 9999 s	10
T1 2	Duty cycle 1	$0.4 \ldots 999.9 \mathrm{~s}$	5
T2 2	Duty cycle 2	$0.4 \ldots 999.9 \mathrm{~s}$	5
Sこtら	Parameter set 3		
XF1 ${ }^{\text {P }}$	Proportional band 1	0.1 ．．．999．9\％	100
XF2 3	Proportional band 2	0.1 ．．． 999.9 \％	100
Tri 3	Integral action time	0 ．．． 9999 s	10
Tu1 3	Derivative action time	$0 . . .9999 \mathrm{~s}$	10
T1 ${ }^{1}$	Duty cycle 1	0.4 ．．． 999.9 s	5
T2 3	Duty cycle 2	$0.4 \ldots 999.9 \mathrm{~s}$	5
Recou	Rapid Recovery（controller on）		
XuDry		0 ．．．9999＊	＇－＿＇
\％u0r＊	X －W limit value（ $\mathrm{X}-\mathrm{W}>$ KWhorn $\mathrm{X} \rightarrow \mathrm{X}$ tracking）	0 ．．．9999＊	＇－＿，
Firworn	set－point gradient with X tracking active	0，01 ．．．99，99／min	＇－＿，

[^1]
### 11.8 Input processing

### 11.8.1 Process value handling

Text 1	Description	Range	Default
IEtw			
Tdz	Differentiation time constant for z	0 ... 9999 s	10
$1 \cdot 10$	Zero offset / ratio	-999 ... 9999	0
a	Factor a / 3-element control	-999 ... 9999	1
b	Factor b/mean value control	-999 ... 9999	0.5

### 11.8.2 Signal pre-processing



## Parameters

### 11.9 Miscellaneous

Text 1	Description		Range				Def.
HLX	General						
Fke'y	Functi	of front panel key	0: no function   1: automatic / manual   2: Wext / Wint				1
Elck 1	EBlog	extended operating level	0 : free	1: blocked	2: blocked by dil	3: blocked by di2	0
	HEloc	auto/man- key	0 : free	1: blocked	2: blocked by dil	3: blocked by di2	0
	CEloc	controller off	0 : free	1: blocked	2: blocked by dil	3: blocked by di2	0
	WEloc	setpoint	0 : free	1: blocked	2: blocked by dil	3: blocked by di2	0
Blek2	F'Bloc	programmer preset	0 : free	1: blocked	2: blocked by dil	3: blocked by di2	0
	REloo	programmer run/stop/reset	0 : free	1: blocked	2: blocked by dil	3: blocked by di2	0
	OBloc	selftuning	0 : free	1: blocked	2: blocked by dil	3: blocked by di2	0

### 11.10 Signals

Signl	Description	Range	Def.
SEt.F.t.	Setpoint signals		
Wint.	Internal set-point		
Wext	External set-point		
cluext.	External correction		
du	Set-point offset	-99,9 ... 999,9	0
WEsel	Min/max set-point		
Corntr	Controller signals		
Y	Correcting value		
YF	Position feedback		
XW	Control deviation		
$\times 1$	Main input x 1		
$\times 2$	Auxillary input x 2		
$\times 3$	Auxillary input x 3		
$\pm$	Auxillary variable		
OUC	External correcting variable limiting		
xeff	Effectiv process value		
Irifut.	Input signals		
INF 1	Input 1		
INF'1r	Raw measure 1		
$\cdots$			
INP'G	Input 6		
INF'Gr	Raw measure 6		
Proog	Programmer signals		
WF	Programmer setpoint		
t-Brut.	Brutto time (inc. all pause times)		
thet	Netto time (without pause times)		
tRest.	Rest time		
PF-	Programmer no.	1... 3	1
C1OEK	Current time		

## 9407 9ा पाना1


13.

### 13.1 Input and output allocation with pre-configured units

The signal (e.g. X1, Y1, alarms) allocation to the inputs and outputs for the relevant pre-configuration (factory setting) is given in the following table. Allocation can be altered at any time via front panel or interface and should be corrected before commissioning, if necessary.
(2) Order numbers and functions for pre-configured units

Subject to alterations without notice Änderungen vorbehalten
Sours réserve de toutes modifications
© PMA Prozeß- und Maschinen-Automation GmbH
P.O.B. 310 229, D-34058 Kassel, Germany

Printed in Germany 949904044211 (10/2013)


[^0]:    1) With the programmer configured, switch-over is between internal and external program set-point.
    2) Can be switched over via interfaces (e.g. engineering tool; operating data)
[^1]:    ＊Decimal point position of adjustment range as for main variable X1．

